

Welcome to Araali Networks’ Community Edition!

Araali Networks Community Edition is dedicated to the hardworking community of
DevOps so as to imbibe a culture of continuous monitoring and security to be an
essential part of the job function. DevOps is about busting silos, and we are
here to bust some more.

We seek to make it easy and fun. We uplift the grammar of network security to
make it meaningful for the DevOps audience.

This has a transformative effect on security because an air-gapped environment
is quite secure. What brings insecurity ought to fix it too. And that we do
with zero trust - simplified to its essence, and democratized. It’s rare for
something to be simple, and yet uplift the security posture all at once. And on
top of it make a promise of no harm.

Through our assessments, we hope you will find answers to the following questions:

	Where are my crown jewels?

	Who is accessing them?

	Are services accidentally overexposed to the public Internet?

So let the show begin!

Introduction to Araali Networks

What is Araali?

Araali transparently secures the network connections between services
deployed on VMs, containers, and container management platforms like
Kubernetes. It creates an identity-based, passwordless system that
performs authentication, authorization, and audit for any inter-service
communication out of the box. The identity-based paradigm is critical for
modern cloud-native constructs where infrastructure is ephemeral, and security
tools cannot use network-based constructs like IPs and ports.

At its core, Araali leverages eBPF [https://thenewstack.io/linux-technology-for-the-new-year-ebpf/], the
superpower of Linux and an identity paradigm inspired by SPIFFE/SPIRE [https://github.com/spiffe/spire]. It provides powerful visibility and
security controls without any code recompiles/changes, has no performance
penalty, and guarantees no disruptions by staying out of the packet
forwarding path. Araali deploys with a single command to cover your fleet of
nodes on the Kubernetes cluster(s) or VMs across clouds.

Visibility

Once deployed, you instantly see your apps and services as an easily-understood network
diagram and can use this to discover anomalies. Araali covers
inter-cluster, intra-cluster, ingress, and egress traffic based on DNS in use (if any).

It also works beautifully for hybrid environments where your Kubernetes cluster
might be communicating with databases on VMs or workloads spanning multiple
clouds and on-prem.

Security

Araali auto-discovers identity-centric policies that are then reviewed and
accepted via APIs or the Araali UI. Once these are accepted, you can
turn on alerts that carry the appropriate context and are intelligently
dispatched to the right app owner. Until this point, Araali is running in the
no-harm monitoring and alert mode.

Once you have monitored your apps for a period, you can turn on enforcement
with the flip of a switch, and Araali can enforce all the policies. Enforcement
means that only the whitelisted/accepted policies will be allowed, and
everything else will be dropped. Enforcement is an intrusive mode, and we
recommend you actively monitor for no alerts for a few days.

We recommend starting your journey inside out, focusing on your crown jewels
first. Once enforced, it will give you peace of mind that only legitimate
processes can talk to the data layer, and nothing else. You should then slowly
expand in concentric circles and build depth into your defense.

Key Insights in Building Araali

As the cloud gained prominence, networking was abstracted from the operations
teams, as they did not own or control the networking boxes anymore, and focus
shifted to IAM roles. Furthermore, the networking controls that the cloud
providers offered (Security Groups) were primarily IP and port-based and
predated the network security stack by over a decade.

Araali’s critical insight was to decouple security from the infrastructure
and create it as an overlay that could be implemented in a distributed
fashion. Every node/VM gets its personal eBPF based firewall which could
enforce Zero Trust security based on Identities. The identity-based policy is
auto-discovered to free Dev and SecOps team from having to handwrite
declarative policies.

eBPF has enabled visibility and control over apps and services at a granularity
and efficiency that was not previously possible without any recompile or rewrite.
Also, it is well-equipped to handle modern containerized workloads as well
as more traditional workloads such as virtual machines and standard Linux
processes, as long as these are running modern Linux kernels that support
eBPF.

Araali Support Matrix

Araali supports both VMs and Kubernetes running on Linux. The free assessment is currently available for Kubernetes only.

Araali leverages eBPF technology which is generally available in kernel 4.10 onwards. Watch this talk [https://youtu.be/7pmXdG8-7WU] to learn more about eBPF.

Below is the list of versions we have actively tested out, but we believe we would cover more than what’s listed here. If you are having any issues, contact us via the slack channel [https://araali-networks-api.readthedocs.io/en/latest/community.html].

[image: Araali k8s Support Matrix]
.

[image: Araali VM Support Matrix]

Term and Conditions

GENERAL

The Araali Freemium product covers up to 5 apps for up to one hour for a point-in-time assessment. To cover more apps, the user can evaluate a paid version of the product on AWS Marketplace [https://aws.amazon.com/marketplace/seller-profile?id=0a2a0563-6f86-4b8a-a0f6-b59c8eb0345c].

EVALUATION

The parties agree and acknowledge that the evaluation of the Service conducted by the Evaluator is intended to understand the posture of their environment and take the right actions to fix it. Araali is not responsible for protecting the Evaluator’s environment.

RESTRICTIONS

The evaluator must not modify, disassemble, decompile, reverse engineer, rent, lease, loan, transfer, or copy any portion of the Software. The evaluator must not circumvent or disable any security or other technological features of the Service.

OWNERSHIP

Araali owns all rights, title, and interests, including all intellectual property rights, in and to the Service, including any improvements, modifications, and enhancements to it. Except as expressly provided in this Agreement, no party transfers, assigns, or otherwise conveys to the other party any right, title, or interest in such first party’s intellectual property rights.

FEEDBACK

The evaluator has no obligation to provide Araali any suggestions, comments or other feedback regarding the Service (“Feedback”). If Evaluator nonetheless provides Feedback to Araali on any version or part of the Service, Evaluator hereby grants to Araali the right to freely use, disclose, reproduce, license, distribute and otherwise commercialize the Feedback in any Araali product, technology, service, specification, or other documentation.

WARRANTY DISCLAIMER

The service is provided “AS IS” for testing only, and Araali does not warrant that the service will operate without error or interruption. Araali specifically disclaims all other warranties, express or implied, including the implied warranties of merchantability, non-infringement, title, quality, accuracy, and fitness for a particular purpose.

Installation

In this guide, we’ll walk you through how to install Araali software into your Kubernetes cluster or Linux VMs and secure your cloud native runtime.
We have made it easy for you to single-click install as well as uninstall Araali.

Overview: Installing Araali is simple. The first step is to self-serve onboard by creating an account on Araali UI [https://console.araalinetworks.com].
After that, for K8s, helm install Araali software onto your Kubernetes cluster, run the Software you want to secure, and come back to the Araali UI for insights.

Steps for securing workloads running on Linux VMs are similar and described below.

NOTE: You should have outbound port 443 open for Araali to talk to its SaaS backend (normally it is already open).

Step 1: Sign In or Create a new Login using the Araali UI

NOTE: Your Araali account is automatically created on first login. If you want to be part
of another person’s (or, team’s shared) account, ask them to add you as a user in their
account before attempting to login.

Visit the Araali Console [https://console.araalinetworks.com] in your browser. If you have a Gmail or GSuite powered email, click the “Sign in with Google” button
to access the Araali UI with single sign on (SSO). There is no need to create a seperate Araali login.

If you do not have a Google powered email, use the “Sign up” button to create an Okta powered account using a non-google email.

[image: Araali Console Sign In]

Step 2: Generate values.yaml for Installation

Go to Araali UI and select Administration -> “Cluster Fortification” in the left-hand panel.

[image: Araalictl installation generate values.yaml]
Click on “+” and provide a name for your workload template. The generated values.yaml
can be used for both VMs and K8s clusters:

	To fortify multiple clusters the “zone” in the downloaded values.yaml must be changed per cluster (to represent the name of the cluster). For e.g. Kustomize can be used to automate multi-cluster deployments.

	To fortify VMs both zone and app must be changed prior to fortifying individual VMs.

[image: Helm Workload and download image]
Now download the file (example below) and save it as values.yaml file

araali:
 workload_id: <wrk-id-variable>
 zone: <zone>

Step 3A: Installation for Kubernetes

Add Araali Repo and Install the Helm Chart.

	Add Repo*:

helm repo add araali-helm https://araalinetworks.github.io/araali-helm/

#If you have already added the repo, instead run this command periodically to keep you repo up to date:

helm repo update

	Check if you are fortifying the right cluster by looking at the current context, the name with a “*” is the one you are pointing to right now:

kubectl config get-contexts

	Install by using the generated values.yaml file:

helm install -f ./values.yaml my-araali-agent araali-helm/araali-agent

Uninstall:

helm uninstall my-araali-agent
The above only uninstalls the installer(due to a bug). Use the command below to uninstall all araali components
kubectl delete daemonset,namespace,serviceaccount,clusterrole,clusterrolebinding,deployment,service,secret,configmap,crd -l is_agent=true -A
kubectl delete daemonset,namespace,serviceaccount,clusterrole,clusterrolebinding,deployment,service,secret,configmap,crd -l is_araali=true -A

Step 3B: Installation for VMs

NOTE: If you have already fortified your Kubernetes cluster, you do not need to additionally fortify your VMs.
These instructions are only for the non-Kubernetes case.

Cloud providers like AWS provide a hook to install software at the time of VM launch.
The generated values.yaml can be used in these init scripts to perform the VM install at boot.
The same approach also works on a live running VM (even without the init hook). It can also be used to embed into terraform.

We need to change the zone and app in values.yaml based on where (e.g. the zone could be changed to prod, staging, qa, or dev) and
what app (e.g. redis, mongoDB, cassandra) will be running on the VM.

Example: Install via AWS EC2 Instance UserData
The following represents a way to embed araali software into an ec2 instance via UserData at bootup time.
Both values.yaml, and araalictl should be accessible to the ec2 instance. Embed this script into UserData:

#!/bin/bash
Note: before every command using wget on a file, run the following command: rm -f <filename>
Otherwise wget will name the file as .1, and you will be working off a stale copy
wget -q https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64
wget -q https://<resourceAccessUrl>/values.yaml # depending on where customer keeps this file
chmod u+x araalictl.linux-amd64
./araalictl.linux-amd64 editvalues -zone=<zone> -app=<app> -f values.yaml
sudo ./araalictl.linux-amd64 fortify-local -f values.yaml

On success, araalifw agent should be running on the VM, and providing functionality.
Any failure conditions are in general recorded in /var/log/cloud-init-output.log.

Uninstall:

sudo ./araalictl.linux-amd64 unfortify-self

Review the Results

Araali UI

Go to the Araali Console [https://console.araalinetworks.com] and log in with the same email that was used to authorize araalictl.

[image: Araali Dashboard Insights (Top Risk Buckets. Automatically Identified)]
The Insights section on the Dashboard pull out nuggets of high priority information for you, such as:

	Database, DB-as-a-Service - your crown jewels

	World Exposed Process - check for accidental exposures

	Privilege Access Process and Containers - these have over privileges and can cause significant damage if exploited

	Critical Vulnerability Containers - these are running with critical CVEs

	SaaS Services - All the SaaS services consumed by your apps

	Log4j - to identify if you have any log4j vulnerability in your environment

You can click on any of the cards to review the details.

YAML File

Access the assessment report using the following command

./araalictl assessment -report

Appendix

If you are unable to use Helm for K8s fortification follow the below instructions

Requirements: You should have access to a modern Kubernetes cluster and a functioning kubectl on your local machine.
If you don’t already have a Kubernetes cluster (e.g. EKS, GKE, AKS, RancherD), one easy option is to run one on your local machine.
There are many ways to do this, including Canonical’s production-ready microk8s for Ubuntu [https://www.araalinetworks.com/post/use-araali-with-microk8s] .

You can validate you have a working setup by running

kubectl version --short

You should see the output with both a Client Version and a Server Version component.

Fortify your cluster using Araalictl

	Check current context, the name with a “*” is the one you are pointing to right now:

kubectl config get-contexts

	Fortify your cluster

	If araalictl and kubectl are running on the same machine:

./araalictl fortify-k8s -auto -tags=zone=<optional-zone-override> -context=<context of k8s cluster>

	If araalictl and kubectl are not running on the same machine:

Create yaml file to fortify your cluster
./araalictl fortify-k8s -tags=zone=<optional-zone-override> -context=<context of k8s cluster>

The above command will generate araali_k8s.yaml file. Copy it to the k8s control plane (where kubectl is running) and then apply
kubectl apply -f araali_k8s.yaml

	Check if Araali is installed

	Araali should be running in two namespaces (1) araali-operator and (2) kube-system:

kubectl get pods -A

[image: Output of Kubectl after Araali Fortification]

Uninstall Araali

If araalictl and kubectl are running on the same machine:

./araalictl fortify-k8s -delete -context=<context of k8s cluster>

If araalictl and kubectl are not running on the same machine:

kubectl delete -f araali_k8s.yaml

VM Installation using Araalictl directly

Araalictl is a command line tool that can also be used to fortify VMs.In the steps below
we will first show how to download and authorize araalictl and then fortify a VM with it.

Step 1: Download Araalictl

If this is your first time running Araali, you will need to download the
“command-line tool” araalictl onto your local machine. You can either download
it from the Araali UI or curl it in.

To download araalictl from the Araali UI

Navigate to Download, under Support on the left-hand panel, and download the
araalictl for your Linux or Mac machine.

[image: Araalictl download from Araali UI]
To curl araalictl directly to your VM, run:

On Linux
curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64

On Mac
curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.darwin-amd64

Step 2: Authorize your Araalictl

First, make your araalictl executable:

chmod +x araali*

ln -sf araali* araalictl

Authorize your session

sudo ./araalictl authorize <CORRECT EMAIL ADDRESS>

NOTE: To correctly authorize araalictl, please enter the same email that was used to sign into the Araali Console.

[image: Araalictl authorize]
Now, go to Araali UI and Navigate to Araali Tools, under Administration on the
left-hand panel.

[image: Araali Authorization]
Click on the “refresh” button if you don’t see “Approve” and click to approve araalictl. Also, the session-id listed on your araalictl will match the session-id shown in the UI.

The “Approve” button should go away and you will see the “Revoke” button which
could be used to revoke the araalictl

[image: Araali Authorization]

Step 3: Fortify your VM

Requirements

	
	You should have a Virtual Machine already set up in order to fortify it with Araali.
	
	Alternatively, if you have a cluster of VMs and wish to fortify them all through a CM VM, see the Remote Fortification section.

	You should have port 443 egress open on all VMs for Araali to talk to its SaaS backend.

Self Fortification

1. Generate local ssh-keys (optional and only if you don’t already have id_rsa.pub in your ~/.ssh directory)

ssh-keygen

2. Copy the public key to authorized_keys to allow passwordless local ssh access

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

3. If you don’t have passwordless sudo setup, edit the sudoers file as shown

sudo visudo

4. Allow for password-less sudoers

Scroll to the very bottom of the file, add the following line
Replace <user> with the user for the VM
<user> ALL=(ALL) NOPASSWD: ALL

^X to save and exit editor

5. Self-Fortify

./araalictl fortify-live -fortify -tags=zone=<zone_name>,app=<app_name> localhost

Remote Fortification

	Check Control VM

	
	A Control VM (CM VM) that has ssh access to the other VMs is used to remotely fortify from one place.
	[image: Setup and Networking]

	It is important that araalictl is downloaded and authorized on the Control VM so that it can remotely install Araali on the rest of the VMs.

	Remotely Fortify

./araalictl fortify-live -fortify -tags=zone=<zone_name>,app=<app_name> <remote_user>@<remote_host>

To update Zone and/or App tags of an already fortified VM

./araalictl fortify-live -add -tags=zone=<updated_zone>,app=<updated_app> <remote_user>@<remote_host>

We recommend using your Configuration Management VM (Ansible, Salt, Puppet, Chef, etc.) as the control VM.

Uninstall Araali

Self:

./araalictl fortify-live -unfortify localhost

Remote:

./araalictl fortify-live -unfortify <remote_user>@<remote_host>

Understanding Araali Assessment

In this section, we’ll walk you through the key security insights uncovered
by Araali assessment. Much of the information can also be obtained as a yaml
report, but the CVE annotation is available only on Araali UI.

	Overall count of services in your environment categorized as - publicly
accessible, internal only, and in use external services

	Important services / datastores (DBs and DBaaS) that you might want to
protect with zero-trust

	Test for important services being accessible by intruders?

	Inactive listen ports found in the environment

	Report of vulnerable VMs and Containers (UI only)

How can you use this information:

First and foremost, it produces a comprehensive, layered diagram of your
environment and shows all the active apps and services.

This information helps you understand if you have any security misconfiguration
in your environment; for example, your DB might be accidentally exposed to the
world or accessible by intruders within your environment (lack of access
controls).

Similarly, intruders might have access to your credential stores and in
particular the metadata service, which holds keys to access cloud resources
(CapitalOne Breach, 2019).

Also, it allows you to monitor your software supply chain - we call it
monitoring your monitors.

Finally, you can visualize the flow of data between applications in your
environment, annotated by any unpatched vulnerabilities, to help identify risk
and prioritize potential remediation efforts.

Yaml output

You can generate the sample report using:

./araalictl assessment -report

The report has many sections that are laid out in the diagrams below.

The top part of the report is the summary for the cluster.

	Number of zones (or kubernetes clusters) = 1

	Number of apps (or kubernetes namespaces) = 6

	Number of internal services (not publicly visible) = 24

	Number of external services consumed = 27

	Number of services provided (publicly exposed) = 29

[image: Araali Report Summary]
Database in your stack are listed under “databases” or “dbaas,” if you are
running the database as a service. Depending on the database or dbaas you can
see the name of the process or port and also if the database is accessible
from an outside pod. If your db has unnecessary exposure, you will see the
flag is_accessible as true.

Top consumed services are a list of external services/egress going out of
your environment.

Inactive port services are services that have open ports that are not
being used during the assessment. We encourage you to verify and close these
ports if not in use.

[image: Araali Report Details]
Internet exposed services are your services that are world visible or
exposed on the internet. Any misconfiguration that leads to internet exposure
will show up here.

Geo org accessors are services that access external/3rd party services
organized by organization name and country.

Starred Lens is a list of important services and apps - your apps running
Databases or services that have a high number of connections. They are
auto-discovered and starred and will also show up on your Dashboard page.

[image: Araali Report Details]

Navigating via the UI

You can log into [https://console.araalinetworks.com] the UI to get visual
information on your cluster, created out of the box by Araali. You start with a
dashboard which is similar to the yaml file summary and gives you a
high-level count of services and compute and auto-starred apps, pinned on the
top part of the UI.

[image: Araali Dashboard with Starred Apps]
You can drill into your cluster by clicking on Runtime or Zones. On the
zones page, you will get a high-level view of your cluster. The left hand is
the ingress and the right hand is the egress made from your cluster. If you
have internet exposure, you will see a world map on the left-hand column.
Similarly, if you have a sneaky command and control, it will show up on the
right-hand side.

[image: Araali Dashboard with Starred Apps]
You can further drill into your cluster to get to the namespace view by
clicking on the magnifying glass in the cluster’s card.

You can see all the namespaces listed out here with both ingress and egress
connections clearly listed out.

[image: Araali Dashboard with Starred Apps]
You can further drill inside any namespace by clicking on the magnifying glass.
We will go to the strutfrontend namespace. Inside the namespace, you can
see all the processes running as part of that namespace. If you have a database
it will show up in the middle row as a card, if you have a dbaas it will show
up in the egress column. In the example here we have a process with just
ingress and no egress. The process also has inactive ports matching what we saw
in the yaml file.

[image: Araali Dashboard with Starred Apps]
We encourage you to go through all the namespaces and verify your apps,
especially if it has a database or if it is using a database as a service.

Command Line Doc

token

	./araalictl token
	Generate token for api use (programmatic access)

authorize

	sudo ./araalictl authorize
	
Used to authorize this copy of araalictl.

Without any arguments, it will initiate the authorization and also
auto-upgrade to the latest published production version.

	-check

	check authorization status

	-clean

	clean up and logout

	-token <fname>
	Use fname for token based auth. If - is used for fname, token is
expected to be piped through stdin

Usage:

generate a token for api use
TOKEN=$(./araalictl token)

usually TOKEN is generated elsewhere and injected with env vars
echo $TOKEN | sudo ./araalictl authorize -token=-

assessment

	./araalictl assessment
	Used to start and stop point in time assessments

	-start

	start the assessment

	-stop

	stop the assessment

	-report

	get a report on findings

	-ignoreMK8S

	ignore MicroK8S even if present

version

	./araalictl version
	Used to get the version of araalictl

	-v

	verbose

upgrade

	sudo ./araalictl upgrade
	Upgrade araalictl to the latest version available.

Python API Doc

Setup

	
api.set_araalictl_path(new_path)

	set the location of araalictl on this node.

	Parameters:

	new_path (string) – araalictl path

	
api.auth(token)

	authorize araalictl for api use. This operation is idempotent and can be run
multiple times without any side effect App.

	Parameters:

	token (string) – token is generated from a manually authenticated araalictl

	
api.deauth()

	deauth araalictl from this node.

App

	
class api.App

	A class representing an application

Usage:

>>> import api
>>> app = api.App("nightly", "bendvm")
>>> for link in app.iterlinks():
... link.accept()
...
>>> app.review()
>>> app.commit()

	Parameters:

	
	zone (string) – name of the zone

	app (string) – name of the app

	
iterlinks()

	An iterator for all links of the app

	Return type:

	iterator of api.Link

	
review()

	Review edits made to links in the app. Links can be accepted, denied or snoozed.

	
commit()

	Commit changes made to links in the app.

Link

	
class api.Link

	Class representing an individual link (policy suggestion). Links can be
accepted or snoozed. Accepted links become whitelist policies for the app,
while snoozed links will appear again if new flows are observed.

Usage:

>>> for link in app.iterlinks():
... link.accept()
...

	
accept()

	Accept link as whitelisted policy.

	
snooze()

	Snooze link. A snoozed link is forgotten. It will show up again if a new
flow is observed. Typically links are snoozed when the underlying problem
is addressed. It is snoozed so that there is notification on subsequent
occurrence.

	
deny()

	Deny link. A denied link is snoozed forever. You not only want to not
accept it, but you dont even want to snooze because you are aware of it
and dont want to accept it, ever!

LinkTable

	
class api.LinkTable

	Class representing an arbitrary table/collection of links (policies), that
allows action on multiple links at the same time. Links can be filtered at
init, so only filtered links enter the table.

Subsequently action can be taken on all links in the filtered table, or by
specifying specific indices. Links can be committed back on a per app basis
or for the entire runtime (which essentially iterates over every app in the
runtime).

Usage:

>>> links = api.LinkTable(app.iterlinks())
>>> links = links.accept(0,2)
>>> app.review()
>>> app.commit()

	Parameters:

	
	links (list of api.Link) – a list of link objects

	filters (lambda returning boolean) – filter to be applied on the input (of links). An arbitrary number of filters can be specified. There are some predefined filters in the api for common use: api.f.

	
accept(*args)

	Accept link by index number. If no index is provided, all links in the
table will be accepted.

	Parameters:

	args (any number of int's) – Multiple indices can be passed

	
deny(*args)

	Deny link by index number. If no index is provided, all links in the
table will be denied.

	Parameters:

	args (any number of int's) – Multiple indices can be passed

	
snooze(*args)

	Snooze link by index number. If no index is provided, all links in the
table will be snoozed.

	Parameters:

	args (any number of int's) – Multiple indices can be passed

Golang API Doc

Setup

	
araalictl.SetAraalictlPath(newPath)

	set the location of araalictl on this node.

	Parameters:

	newPath (string) – araalictl path

	
araalictl.Authorize(token)

	authorize araalictl for api use. This operation is idempotent and can be run
multiple times without any side effect App.

	Parameters:

	token (string) – token is generated from a manually authenticated araalictl

	
araalictl.DeAuthorize()

	deauth araalictl from this node.

App

	
class araalictl.App

	A struct representing an application

Usage:

app := araalictl.App{ZoneName: "nightly", AppName: "bendvm"}
app.Refresh()
app.Links[0].Accept()
app.Commit()

	Parameters:

	
	ZoneName (string) – name of the zone

	AppName (string) – name of the app

	
Refresh()

	Fetches all the links for the app and links are accessible as app.Links.

	
Commit()

	Commit changes made to links in the app.

Link

	
class araalictl.Link

	Struct representing an individual link (policy suggestion). Links can be
accepted, denied or snoozed. Accepted links become whitelist policies for the app,
denied links help with ignoring alerts until taken care of while snoozed links
will appear again if new flows are observed.

Usage:

app.Links[0].Accept()

// or,
app.Links[0].Snooze()

// or,
app.Links[0].Deny()

	
Accept()

	Accept link as whitelisted policy.

	
Snooze()

	Snooze link. A snoozed link is forgotten. It will show up again if a new
flow is observed. Typically links are snoozed when the underlying problem
is addressed. It is snoozed so that there is notification on subsequent
occurrence.

	
Deny()

	Deny link. A denied link is snoozed forever. You not only want to not
accept it, but you dont even want to snooze because you are aware of it
and dont want to accept it, ever!

Notebook Doc

Araali creates per app diagrams out of the box. These are not just diagrams,
they actually represent policies that have been automatically figured out for
you. All that is needed of you is review. Once reviewed, the diagrams are
natively enforced by our purpose built firewall.

The policy is represented as a link DB, and you can do data science on these
links. This is quite useful as you tinker around with what Araali has
discovered. The same APIs can be run outside of the notebook as a regular
program/script.

Getting started

In a terminal:

Create a directory where you will checkout from github
mkdir -p opensrc
cd opensrc
git clone https://github.com/araalinetworks/api.git

now run the notebook
cd api/python/
./run.sh

Accessing Notebook

	To access the notebook, copy and paste this URL into your browser:
	
	App Lens Notebook [http://localhost:8888/notebooks/araali_api_lens.ipynb]

	Admin Notebook [http://localhost:8888/notebooks/araali_api_admin.ipynb]

NOTE: Locate token to use in the terminal output

Plain old scripting

If you are not familiar with notebook, you can also write old style scripts:

$ source araali/bin/activate && python3 myscript.py
$ cat myscript.py

 import api
 import araalictl
 print(api.Lens.monitor_world())

Documentation

Use the python tab in this guide:

https://araali-networks-api.readthedocs.io/en/latest/guide_lenses.html

Understanding Araali Policies

Araali Policies

Discover

One of the most beneficial features of Araali is its policy paradigm. It
automatically discovers policies for every namespace/app - no need to write
declarative policies. Besides, Araali uses identity instead of IP and Port for
policies. The identity paradigm is more relevant in the modern cloud-native
environment where IPs are ephemeral. Araali’s identity is inspired by
SPIFFE/SPIRE [https://github.com/spiffe/spire].

[image: Araali k8s Support Matrix]
When you run Araali assessment, it discovers the communication between services
identities and automatically suggests those policies as a diagram. In the
diagram, each box represents a process. It will have an identity if Araali is
running or a DNS or IP address if there is no Araali. The lines between these
boxes represent network communication - all the links will start their
lifecycle as alerts as shown in the above diagram.

Review

Araali provides various ways of reviewing the links once we are done with the
discovery step. We can verify the communication pattern of an application
through our UI or our API. Links that were discovered can be transitioned to
one of the following states.

1. Allowed

Links accepted as whitelist policy.

2. Snoozed

A snoozed link is forgotten. It will show up again if a new flow is observed.
Typically links are snoozed when the underlying problem is addressed. It is
snoozed so that there is a notification on subsequent occurrences.

We will be able to snooze erroneous whitelisted/denied policies as well.

3. Denied

A denied link is snoozed forever. You neither want to accept nor snooze because
you are aware of it and don’t want to be bothered by it again.

Enforce

Once policies are reviewed, they are ready to be enforced. Creating guard rails
and monitoring for deviations vs enforcing them upfront is a business decision
that depends on the value of the resource being protected. Araali allows you to
make these decisions at a very fine granularity - at a per app and per service
level

Managing Policies in Araali UI

We drill down to the app page from the zone page selecting the zone we are
interested in and from there we choose the app we are interested in and land on
our policy page for that app.

[image: Araali k8s Support Matrix]

1. Accepting

	Choose the red line for each connection that you want to approve.

	Choose the check mark. The line turns green.

Validate and accept all approved connections. This converts them to policies.

That’s it—you have created allow-list policies for your app! No need to
manually discover and write declarative policies.

2. Snoozing

	Choose the red line for each connection that you want to snooze.

	Choose the timer icon. The line turns blue and is hidden by default.

3. Denying

	Choose the red line connection you’d like to snooze forever.

	Choose the bell icon. The line turns yellow.

The snapshot below shows some of the transitions made on our UI.

[image: Araali k8s Support Matrix]

Managing Policies Araali API

The above data can be accessed as python objects as well using our API. We can
set up python API as described here [https://github.com/araalinetworks/api].

Fetching links for a given zone and app.

import API
app = api.App("azuref", "wordpress")

We can access the links part of the app as below.
for link in app.iterlinks():
 link.to_data()

Once we have the links we can take the following actions.

	Accept an alert as defined policy.

app.links[0].accept()

	Deny an alert / defined policy.

app.links[0].deny()

	Snooze an alert / defined policy / denied policy.

app.links[0].snooze()

Templates

Araali baselines your application communication and presents them as an
identity-based policy recommendation which can then be accepted and converted
to policy. This means no handwriting policies, everything is automatically
discovered. Once these policies are accepted, they can also be enforced, which
means only whitelisted communication will be allowed and the rest will be
dropped.

Policies can be accepted per application using Araali UI or APIs. This works
well for small to medium-sized applications but might seem tedious for a very
large app. Araali allows the option to automate the acceptance of policies by
leveraging templates. Templates are generally repeating patterns of
communication seen in an application. Some of the examples could be

	Backend talking to Databases

	K8s nodes talking to control plane service

	VMs in the cloud talking to metadata services and so on

These repeatable and known communication patterns can be translated into
templates which helps with accepting the policies automatically without much
user intervention.

Creating Templates

Templates can be created using APIs/UI. Users can choose to create declarative
templates or convert an existing app’s policy links (suggested by Araali) to
templates

App Links to a Template

Here are instructions to use templates.

In the image below the user chooses a link from Prometheus to the control plane
service and clicking on the green save button takes us to the template editor.

[image: Araali UI link to template]
In the editor the user can modify the selectors and it’s default values. This
will be used to filter links that the user wanted to automatically convert to
policies. The values specified here will be used in the policy selectors.

[image: Araali UI link to template]
Once the user is satisfied with the selectors, they can name the template and
also check the ‘Search and Use Continuously’ option at the bottom which will
allow the user to start using the template. The user can choose to just save
and turn on the template later as well.

A user can use araalictl API to accomplish the link to template conversion
similar to the UI. The process starts by fetching links for a service or an app
lens. Below is an example of fetching links for service. The command returns a
list of links and the user picks out a link that they are interested in.

Given the link above the user runs ‘link-to-template’ command to convert the
link to a template:

$ cat prometheus_link | ./araalictl api -link-to-template

- name: mufasa-k8s_monitoring.prometheus-operator.prometheus-operator_operator_to_10.100.0.1
 link_filter:
 client:
 zone: mufasa-k8s
 app: monitoring.prometheus-operator.prometheus-operator
 process: operator
 server:
 subnet: 10.100.0.1
 netmask: 32
 dst_port: 443
 use: false

If the user is satisfied with the above conversion they can accept it as is. If not, they can dump it to a file, edit, and then accept using the below command.

Accepting as is:

$ cat <policy_yaml> | ./araalictl api -update-template -use-link-template

Accepting edited template:

$ cat <edited_policy_yaml> | ./araalictl api -update-template

Sometimes a user might have an in-depth understanding of their app and might
want to specify a declarative template. Some common examples, ‘snapd’ process
on AWS EC2s talking to the Metadata Service (169.254.169.254:80), or the
Kubelet talking to the coreDNS in a Kubernetes cluster.

Go to the template page and click on the “green plus button” to add a new template.

[image: Araali Templates]
Once the template editor pops up, the user can choose the selectors they would
like to use to filter links and accept them as policies (e.g., snapd talking to
the MetaData Service below). Once satisfied, name the template, and check the
option to “Search and use continuously” if they want to start using it right
away. The user can choose to just save and turn on the template later as well.

[image: Create Templates]
The Araali APIs can take declarative policies in yaml format. Below is a sample
yaml file:

$ cat meta.meta
- action: DEL
 name: amazonSsmAgentToMetadata
 link_filter:
 client:
 binary_name: /snap/amazon-ssm-agent/[0-9]+/amazon-ssm-agent
 server:
 subnet: 169.254.169.254
 netmask: 32
 dst_port: 80
 selector_change:
 client:
 binary_name: ^/snap/amazon-ssm-agent/[0-9]+/amazon-ssm-agent$
 use: true
- name: ingressHaproxy
 link_filter:
 client:
 subnet: 0.0.0.0
 server:
 process: haproxy
 binary_name: /usr/sbin/haproxy
 use: true
- name: snapdToSnapcraft
 link_filter:
 client:
 binary_name: /snap/core/.*/usr/lib/snapd/snapd
 server:
 dns_pattern: snapcraft.io|snapcraftcontent.com
 dst_port: 443
 selector_change:
 client:
 binary_name: ^/snap/core/.*/usr/lib/snapd/snapd$
 use: true
- name: ssmAgentWorkerToMetadata
 link_filter:
 client:
 binary_name: /snap/amazon-ssm-agent/[0-9]+/ssm-agent-worker
 server:
 subnet: 169.254.169.254
 netmask: 32
 dst_port: 80
 selector_change:
 client:
 binary_name: ^/snap/amazon-ssm-agent/[0-9]+/ssm-agent-worker$
 use: true
- name: kubeletToCoredns
 link_filter:
 client:
 zone: myk8s
 app: myapp
 binary_name: /snap/microk8s/\.*/kubelet
 server:
 zone: myk8s
 app: kube-system.coredns.coredns
 process: coredns
 selector_change:
 client:
 binary_name: /snap/microk8s/\.*/kubelet

There are three examples in the above yaml file.

	amazonSsmAgentToMetadata - this is a non araali egress template.
Non-araali servers are identified using dns_pattern or subnet/mask along
with dst_port. This also shows an example of how to delete an existing
template.

This policy has an action as well and it is set to DEL, this helps with
deleting templates that are already defined.

snapdToSnapcraft - this is another example of non araali egress template
where we are trying to match multiple fqdn patterns in link filter and
trying to accept the links matching them.

	ingressHaproxy - this is a non-araali ingress template. The non araali
clients are identified using subnet and mask and if 0.0.0.0 is used it
needs to have an endpoint group marker __WORLD__ or __HOME__ to narrow them
down to public or private ip addresses. If not specified, the template will
match both. In this example we have skipped using it.

	kubeletToCoredns - this is an araali to araali template. The link_filter
section has client and server selectors defined to select links that need to
be accepted as defined policy. Once the links are selected, we use selectors
from the link to create policies by default. If we need those selectors to
be replaced by a different value, we can specify them in the
selector_change section. In this example we want the binary_name
selector to be replaced with the regex /snap/microk8s/.*/kubelet.

Note: Allowed selectors for Araali and Non-Araali endpoints.

Araali - “zone, app, process, binary_name, parent_process, dst_port”

Non-Araali Client - “subnet, netmask, endpoint group”

Non-Araali Server - “dns_pattern/(subnet, netmask), dst_port”

Note: Once defined, we need to start using the templates to accept links as defined policies. In the yaml we can set use: true like we have in ssm-agent-worker

API command to create templates:

$ cat <policy_yaml> | ./araalictl api -update-template

Defining templates only store it in the data store. In order to use it, to
accept policies, a user has to set use boolean to true in the above yaml.
Another way to use the template is to issue the start command with an explicit
template name as shown below:

./araalictl api -template ingressHaproxy,snapdToSnapcraft -op use

Stop using Templates

Deleting Templates

Listing Templates

The above command dumps the existing policies and their state in yaml format.

Subscribing to Perimeter Egress:

./araalictl api -subscribe-for-alert -direction egress_world

Options for direction are: ingress_world|egress_world|ingress_home|egress_home|araali

Unsubscribing completely:

./araalictl api -unsubscribe-from-alert

Policy as Code

Provisioning Policies from Git

On every deployment of an app that needs to be secured, we can clean and apply
policies that were saved in the git repo as part of ops for that app. This
ensures that we always start from a clean state where we only allow the
links that we have already reviewed and approved.

1. Generate and apply the Araali firewall installation yaml with the AraaliPolicy
CRD enabled.

	
	Modify the Service Discovery config to start watching Araali policy lifecycle.
	araalictl fortify-k8s -tags=zone=policy-1 -araali-policy-crd -force policy-1

kubectl edit cm araali-operator-config -n araali-operator
araalitags.operator.araali_k8s_policy_enable: "1" (Add this to configmap)

kubectl apply -f araali_k8s.yaml

	Apply the Araali policy from git before deploying application.

kubectl apply -f /tmp/yaml/common.voting-tmp.yaml -n voting-tmp (K8S)
cat /tmp/yaml/common.voting-tmp.yaml | araalictl policy -zone=policy-1 -app=voting-tmp -tenant=vmk -op update (VM)

	Check UI for policy

[image: AKS Voting App]

With this workflow, Araali automates the task of writing network security
policy and managing its lifecycle using git ops. After these policies are
discovered, the app can use them on any cluster or even other clouds!

Pushing Policies to Git

Once we are satisfied with the review of the links for an app, we can fetch the
links in yaml format using our command-line tool araalictl by following the steps below.

	Download the reviewed and accepted policy for an application (rsncommon/voting)

araalictl policy -zone=rsncommon -app=voting -tenant=rsn > /tmp/yaml/common.voting.yaml

	Use the AKS voting app running in rsncommon zone and voting namespace.

[image: AKS Voting App]

3. Modify the zone, app and any other fields that need to be edited and save them into a different
file. In this example the zone and app will be modified to (policy-1/voting-tmp)

	Check your policy diff visually to make sure it is ok

araalictl policy -file1 /tmp/yaml/common.voting.yaml -file2 /tmp/yaml/common.voting-tmp.yaml -op=diff

5. Note down the URL presented by the policy diff API. This is a persistant URL that can be
passed around for policy review.

araalictl policy -diff-id=74c05743-a25c-45e4-8dd8-1f27956b690c

	Commit the new policy file (/tmp/yaml/common.voting-tmp.yaml) to git along side the application.

We can repeat the discovery and review process to come up with good allowed
policies. We should also be able to view the difference between policies in the
file on the our git repo and the current status of links in the app, all on our
UI.

Saving policies in git also help with versioning the policies which allow us to
iterate over the discovery and review process.

Template as Code

In order to work with templates from the command line as opposed to
the UI, there are a few commands we can use. Before you get started,
make sure you are in the Python directory, and run:

./setup.sh

Commands

Config

The config command is the first command that should be used. It will
specify the git directory:

To specify directory for git
./template.py config -d=<git-directory>

List

The list command can be used to list the templates for a tenant:

To access local templates
./template.py ls

To access public templates
./template.py ls -p

Pull

The pull command can be used to make a copy of the public branch template
into your local branch:

./template.py pull -p -T=<template-name-or-path>

If no template is provided, defaults to all templates

Format

The format command is used to apply edits to the template:

./template.py fmt <template-path>

Push

The push command is used to push the local branch template to the public branch. NOTE: This is a dangerous command.
Only run if you are confident in your changes to the template:

./template.py push -T=<template-name-or-path>

If no template is provided, defaults to all templates

Drift

As edits are made to the templates, the local branch can start to
differ slightly from the public one. The drift command can be used to
check these differences:

./template.py drift -p -n -T=<template-name-or-path>

If no template is provided, defaults to all templates

Alerts

The alerts command can be used to check any alerts:

./template.py alerts

Example Videos

Updating a Docker Template

 Setting up Araali Cloud Integration

Setting up Araali Cloud Integration

1) In the Araali UI, go to “Cloud Integration” in the left-hand navigation
panel.

[image: "Cloud Integration" in the left hand panel]
2) Click the “+” icon on the top right, select your cloud provider, and enter
your account id. Currently, Araali supports AWS only.

[image: Selecting cloud provider]
3) CLick on Download Yaml to download it on to your endpoint. Then click on
“here” to open AWS cloud formation in another window to run this yaml file.

[image: Downloading yaml]

	Upload the yaml file and go to next

[image: Uploading yaml to AWS cloud formation]
5) Give a name to the stack. The rest of the default values are pre-populated,
click next to proceed.

[image: Stack naming]
6) Click next for Step 3 and finally acknowledge the IAM disclaimer and submit
for Stack Creation

[image: Acknowledging the IAM disclaimer]

	Once the creation starts, go to the “Events” tab to check for completion

[image: Events tab]
8) Go back to the Araali UI and now you will be able to see all the VPCs across
all regions here (could take about 60 mins when you run it for the first time).
It will list out the number of nodes in every VPC that is monitored and not
monitored by Araali. You can turn on the lock to get an alert any time a node
comes up without Araali on it.

[image: VPCs in Araali ui]

 Getting Alerts in Slack

Getting Alerts in Slack

Araali supports multiple channels through which customers can access their
alerts. Slack is one of them. Slack alerts are sent using a webhook that can be
configured using Araali APIs.

Creating a slack webhook URL

Here [https://slack.com/help/articles/115005265063-Incoming-webhooks-for-Slack] is
a link to help with creating slack webhooks. The steps are (please follow the
link for latest from slack directly):

	Create a new Slack app in the workspace (araali - in the example below)
where you want to post messages.

	From the Features page, toggle Activate Incoming Webhooks on.

	Click Add New Webhook to Workspace.

	Pick a channel that the app will post to, then click Authorize.

	Use your Incoming Webhook URL to post a message to Slack.

This is a sample slack application using which we show how to configure
webhooks for “araali” workspace. The webhook URL is created as part of the
application and we’ve chosen a slack channel on which we will receive
notifications.

[image: Slack Webhook Setup]

Configure slack webhook URL

Once we have the webhook ready we can use araalictl api to configure the
webhook so that we can start receiving araali alerts on a slack channel:

./araalictl api -update-webhook -webhook <webhook_url>

Subscribing to Alerts

We can subscribe to alerts for a lens we are interested in using araali UI as
below.

A user can subscribe to alert notifications. Anytime, a new alert is seen by
the system an email will be generated. With time as the app is discovered, new
alerts should reduce (only infrequent communications will trigger new alerts).

Security Professionals can subscribe for all alerts related to perimeter egress
or ingress across all apps.

[image: Subscribing to Alerts]
Finally, we should start receiving alerts on the slack channel that we configured.

[image: Getting Alerts in Slack]

 Remapping Apps

Remapping Apps

Araali uses convention to discovers apps in your k8s environment. As best
practice, apps are deployed in their own namespace. There is no good reason to
actually not do so.

However, due to team isolation, sometimes namespaces are pre-created by the
infrastructure team and kept small by design (to prevent proliferation and also
to keep the privileges for namespace management limited to a smaller team).

For e.g. some people could have static namespaces that denote environments
instead of apps (prod, staging, dev). In other cases, namespaces could be
created per team for isolation (team1, team2). If teams map to features/apps,
then there is not much of an issue. However, a single team could be responsible
for multiple logical apps and the namespace itself ends up becoming a container
for these apps.

For such scenarios Araali allows you to customize apps the way you understand
it, regardless of which namespace they will show up in.

Remapping Using Pod Label Key

If your pods already have a label that represents your desired app remap structure, then App Remapping can be easily accomplished via the UI.

Click and select “App Remap” and then click on the “+” icon on the top right corner.

[image: App remap]
This will open “Add Pod Label” where you can select the zone/cluster, app/namespace that you want to remap. Pass the Pod Label Key for Araali to pull the information from the Pod metadata and remap your app.

[image: App Pod Label Key]
Or, do it using code:

// List existing App-Mapping Based on Pod-Label
$./araalictl app-mapping -op list
- zone: nightly-k8s
app: nightly-bend
label: app

// Create Yaml file with zone, app that needs to be remapped and the label to be used for remapping.
Create a new file: app_remap.yaml

- zone: test-zone
 app: test-app
 label: app

// Add new pod label based app remapping
$ cat app_remap.yaml | ./araalictl app-mapping -op add
{"success":true}
$./araalictl app-mapping -op list
- zone: nightly-k8s
 app: nightly-bend
 label: name
- zone: test-zone
 app: test-app
 label: app

// Delete existing pod label based app remapping
$ cat app_remap.yaml | ./araalictl app-mapping -op del
{"success":true}
$./araalictl app-mapping -op list
- zone: nightly-k8s
 app: nightly-bend
 label: app

App (Re)mapping Using podName

This is a sample google shop application where all the pods show up under a
single app - gshop. We’ll walk through the process of splitting this up into
three different apps.

[image: Before remapping apps]

List all the apps to pod mapping as a yaml file

$./araalictl api -list-pod-mappings > pod_mapping.yaml

Update the mapping yaml file

	We delete the pods we don’t want to remap.

	As we can see we have the app and namespace set to the same value.

	Now we reset the app to the name we would like to see it as.

This can be done programmatically as well. Here we show a manual way of editing
the yaml files.

Below is a sample yaml file generated. Now we would like to re-map the pods as
below.

frontend → gshop-frontend

redis-cart → gshop-db

rest of the services → gshop-service

Here is the code:

$ vi pod_mapping.yaml
- zone: prod
 namespace: gshop
 pod: checkoutservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: frontend
 app: gshop
- zone: prod
 namespace: gshop
 pod: cartservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: recommendationservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: currencyservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: shippingservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: adservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: redis-cart
 app: gshop
- zone: prod
 namespace: gshop
 pod: productcatalogservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: emailservice
 app: gshop
- zone: prod
 namespace: gshop
 pod: paymentservice
 app: gshop

Edited yaml file (with changed app):

$ vi pod_mapping.yaml
- zone: prod
 namespace: gshop
 pod: checkoutservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: frontend
 app: gshop-frontend
- zone: prod
 namespace: gshop
 pod: cartservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: recommendationservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: currencyservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: shippingservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: adservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: redis-cart
 app: gshop-db
- zone: prod
 namespace: gshop
 pod: productcatalogservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: emailservice
 app: gshop-service
- zone: prod
 namespace: gshop
 pod: paymentservice
 app: gshop-service

Update the pod to app mapping in araali

$ cat pod_mapping.yaml | ./araalictl api -update-pod-mappings

Once the above exercise is complete we can see that a single app before got
split into three different apps as below.

[image: After remapping apps]

Programmatic Mapping by Example

This can also be programmatically achieved using our python APIs. The
transformations should ideally be idempotent so they can be rerun without
issues:

mapping = araalictl.get_pod_apps()

if (obj["zone"] == "nightly-k8s" and
 obj["namespace"] == "nightly-bend" and
 "pod" in obj):

 if obj["pod"] in ["flowstitcher", "flowprocessor",
 "assetinfo-processor",
 'applens-generator',
 "applens-compactor",
 "vulnscanner"]:

 obj["app"] = "nightly-bend-pipeline"

araalictl.push_pod_apps(mapping)

Functions

Get

Get all Mapping content.

Command Line

./araalictl app-mapping -op list

Python

api.Mapping.get()

Add

Add to mapping content.

Command Line

"i" to insert at cursor, "a" for after cursor, and "o" for line above cursor
vi add_mapping.txt
Insert zone, app, label in yaml format
Esc to exit edit mode in vi
“:wq” to quit once in control mode
cat add_mapping.txt | ./araalictl app-mapping -op add

Python

api.Mapping.add(zone, app, label)

Remove

Remove from mapping content.

Command Line

"i" to insert at cursor, "a" for after cursor, and "o" for line above cursor
vi add_mapping.txt
Insert zone, app, label in yaml format
Esc to exit edit mode in vi
“:wq” to quit once in control mode
cat add_mapping.txt | ./araalictl app-mapping -op del

Python

api.Mapping.rm(cls, zone, app, label)

 FAQ

FAQ

What is Araali

Araali transparently wraps any application without requiring any change such
that it is assigned a stable identity via our distributed trust fabric, that
also controls all communication attempts between them.

Our least privilege policies are automatically discovered with a single click
install that requires no config and comes with a do no harm guarantee.

This is particularly useful for cloud native where applications are spun up
dynamically and are often ephemeral. The identity based policies are location
and IP independent, making them reusable post discovery.

MTLS vs Araali

MTLS is primarily giving you data in flight encryption. The certificates are
tied to infrastructure elements like nodes, IPs and Pods, not to the transport
endpoints. A malware behind the pod enjoys the same privilege. Moreover, there
is also authorization to do once identity is established. Araali makes auto
discovery of least privilege communication policies a breeze and enforces it
too.

Service Mesh vs Araali

Service mesh helps with service discovery, load balancing and circuit breaking.
Araali does not offer any of these functions. Service mesh also offers security
policy. However these are at pod/IP level and any malware sitting behind the IP
enjoys the same privilege. Moreover, Araali makes policy discovery a breeze.
These policies are portable and permanent and enjoy the same lifecycle as the
app itself.

 Privacy Policy

Privacy Policy

We care about your privacy! [https://www.araalinetworks.com/privacy-policy]

 Compliance via API

Compliance via API

Overview

Araali also allows you to fulfill your SOC2 compliance requirements. Some of the areas where Araali can help fulfill the SOC2 compliance requirements are:

	
	Visibility into your Assets - VMs and Containers
	
	get_compute()

The get_compute API is very rich and has information on both Assets as well as corresponding CVEs

	
	Vulnerability List based on your VMs and Containers
	
	get_compute()

	
	Compensating control for Vulnerability - Araali Shielding
	
	get_lenses(enforced=True)

In SOC2 you have to show compensating control for known vulnerability. Araali allows you to shield your vulnerable Apps or Containers to fulfill this obligation. This API gives a list of Zones and Apps that have been shielded/enforced. Using this API with the output of get_compute(), you can understand which assets have been Araali Shielded.

	
	Alerts generated - Intrusion Detection
	
	get_alerts()

This API gives you a list of Alerts that were generated in a given period of time.

	
	Users who have access to Araali and their assigned Roles
	
	rbac_show_users()

This API gives a list of users along with their assigned role.

	
	Proactively Shielded Apps - Intrusion Prevention
	
	get_enforced_links()

Araali Shielding is similar to Application Firewall as it enforces both incoming and outgoing traffic from your assets. Once Shielded, Araali will not let your application deviate from these baseline policies making them unexploitable. These are enforced processes belong to a certain Zone/Cluster and App/Namespace which can be tabulated with this API.

[image: Compliance Diagram]
For SOC2 Type2 compliance a customer has to show that they have ongoing security controls in place and it can be proved via periodic capture of evidence. To prove the above controls Araali can take periodic snapshots of all the items above, and put it in a report that can be used by the auditor.

Python Usage

	Fork the open source `Github Repo<https://github.com/araalinetworks/api>`_

	Download the fork to your local machine

	Navigate to the fork through command line

	Run Python in the command line

Commands

To specify tenant through the command line, use the -t or --tenant flags. To do so through Python, use the tenant argument.

get_compute()

Gets computes for a specific zone-app

Command Line

./araalictl api -zone <zone> -app <zone> -fetch-compute

Python

import araalictl
araalictl.get_compute(zone=<zone>, app=<app>)

get_lenses(enforced=True)

Gets all enforced lenses for the tenant (if specified)

Command Line

./araalictl api -fetch-enforcement-status -enforced

Python

import araalictl
araalictl.get_lenses(enforced=True)

get_alerts()

Gets all alerts for the tenant (if specified).

Command Line

use -starttime and -endtime to specify start and end times (epoch)
./araalictl api -fetch-alerts -paging-token <token> -count <count>

Python

use start_time and end_time to specify start and end times (epoch)
import araalictl
araalictl.get_alerts(token=<token>, count=<count>)

rbac_show_users()

Gets all current users for tenant (if specified)

Command Line

./araalictl user-role -op list-user-roles

Python

import araalictl
araalictl.rbac_show_users()

get_enforced_links()

Gets enforced links for tenant (if specified)

Command Line

This command uses multiple other Python wrapper commands, making a command line execution difficult

Python

import araalictl
araalictl.get_enforced_links()

 Golang SDK API

Golang SDK API

Functions

Must import api/api for all functions to work

TenantCreate()

Create a tenant

Go

api.TenantCreate(name, adminName, adminEmail string, freemium bool)

TenantDelete()

Delete a tenant

Go

api.TenantDelete(tenant string)

UserAdd()

Add a User

Go

api.UserAdd(tenant, userName, userEmail, role string)

UserDelete()

Delete a User

Go

api.UserDelete(tenant, userEmail string)

ListAssets()

Get assets

Go

api.ListAssets(tenant, zone, app string, activeVm, inactiveVm, activeContainer, inactiveContainer bool, startTime, endTime time.Time)

ListAlerts()

Get alerts

Go

api.ListAlerts(tenant string, filter *araali_api_service.AlertFilter, count int32, pagingToken string)

ListLinks()

Get links within a zone/app

Go

api.ListLinks(tenant, zone, app, service string, startTime, endTime time.Time)

ListInsights()

Get tenant wide insights

Go

api.ListInsights(tenantID, zone string

 REST APIs

REST APIs

REST APIs are protected by tokens that need to be passed by the client making
these requests.

To generate the token, go to Admininstration - API Tokens.

[image: Admininstration - API Tokens]
Click on + to create a new token.

[image: Creating a new token]
Copy generated token and keep it in a safe store.

[image: Token to save]
The token can be revoked at anytime.

[image: List of tokens generated and revoke button]

Follow the API calls below to get specific information required for compliance

Assets

Lists out all the assets - VMs and containers, along with vulnerabilities. Also
includes inactive assets that were previously live but are no longer running.

https://api-prod.aws.araalinetworks.com/api/v2/listAssets?tenant.id=<tenant-id>&filter.time.start_time=2021-05-05T16:47:00.000Z&filter.time.end_time=2023-05-05T16:57:00.643Z&filter.list_active_vm=1&filter.list_active_container=1&filter.list_inactive_vm=1&filter.list_inactive_container=1

Enforced Lens

	List of containers or VMs where Araali FW is enabled. This is to show that
	compensating controls and IPS exist for vulnerable containers.

https://api-prod.aws.araalinetworks.com/api/v2/listShieldedLens?tenant.id=<tenant-id>

Alerts

List of open and closed alerts. This is to show that you have IDS enabled for
your cluster.

https://api-prod.aws.araalinetworks.com/api/v2/listAlerts?tenant.id=<tenant-id>&filter.time.start_time=2023-05-03T16:57:00.643Z&filter.time.start_time=2023-05-05T16:57:00.643Z&filter.list_all_alerts=1&filter.open_alerts=1&filter.closed_alerts=1&filter.perimeter_egress=1&filter.perimeter_ingress=1&filter.home_non_araali_egress=1&filter.home_non_araali_ingress=1&filter.araali_to_araali=1&count=20

List Insights

This is the list of critical assets in your infrastructure like internet-exposed
assets, databases, high-privilege assets, potential backdoors, and many more.

https://api-prod.aws.araalinetworks.com/api/v2/listInsights?tenant.id=<tenant-id>

 Getting Started with AWS EKS

Getting Started with AWS EKS

Install AWS EKS with eksctl

Skip this part and go to “Test if you have access” if you have already installed or have access to an AWS EKS cluster and a functioning kubectl on your local machine.

Install eksctl by following instructions in this doc [https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html]

This is a good way to choose Ubuntu AMI for the node machine. The console approach does not allow you to launch Ubuntu AMI.

Create a cluster and Nodes

This will create a cluster using Ubuntu AMI. If you don’t choose an AMI it will pick AmazonLinux:

eksctl create cluster --node-ami=Ubuntu1804

This will attach node groups to the cluster:

eksctl create nodegroup --cluster=floral-sculpture-1600963464 \
 --name=testu --node-ami-family Ubuntu1804 --node-volume-size=45 \
 --ssh-public-key="~/.ssh/key1.pub"

Access your cluster

After the k8s cluster and nodes are created (either through CLI or console), the next step is to access it:

aws eks --region us-west-2 update-kubeconfig --name k8s-test-cluster

This will add cluster information to kubectl config file generally sitting in /home/ec2-user/.kube/config

Test if you have access to the cluster

kubectl get svc -A

Check which cluster you are connected to:

kubectl config current-context

Install Araali

Follow the instructions in the getting started post [https://araali-networks-api.readthedocs.io/en/latest/gettingstarted.html#]

Setting up an app to test

Download the google-microservice-shopping app from GitHub:

git clone https://github.com/GoogleCloudPlatform/microservices-demo.git

Go to the directory:

cd microservices-demo/release

Create a namespace:

kubectl create ns gshop

Run the file:

kubectl apply -f kubernetes-manifests.yaml --namespace=gshop

Get the IP for external service to log from a browser:

kubectl get svc -A

FrontEnd

[image: Google Shopping App Front End]

 Getting Started with GKE/AKS

Getting Started with GKE/AKS

Requirements

You should have access to a cluster on GKE and a functioning kubectl on your local machine.

You can validate your kubectl by running:

kubectl version --short

Check if kubectl is pointing to the cluster you want to assess:

kubectl get svc

Install Araali and start the assessment

Follow the instructions in the getting started post [https://araali-networks-api.readthedocs.io/en/latest/gettingstarted.html#]

Once Araalictl is set up, start the assessment:

./araalictl assessment -start

Setting up an app to test

Download the google-microservice-shopping app from GitHub:

git clone https://github.com/GoogleCloudPlatform/microservices-demo.git

Go to the directory:

cd microservices-demo/release

Create a namespace:

kubectl create ns gshop

Run the file:

kubectl apply -f kubernetes-manifests.yaml --namespace=gshop

Get the IP for external service to log from a browser:

kubectl get svc -A

FrontEnd

[image: Google Shopping App Front End]

Stop the assessment

After running the tests, you can stop the assessment:

./araalictl assessment -stop

Freemium only allows you to run point-in-time assessments (vs continuous monitoring/security). So as long as your tests complete in a reasonable time, you should have a good picture of your application

 Getting Started with microk8s (Ubuntu)

Getting Started with microk8s (Ubuntu)

This is an end-to-end guide on how to test Araali on Canonical’s MicroK8s and use an opensource microservice app (sockshop).

Install MicroK8s

Start with a VM running Ubuntu. For demonstration purposes, Ubuntu 21.10 is used here.
Install MicroK8s with the following command to get periodic snap updates of Microk8s to ensure compatibily with newer Ubuntu releases:

sudo snap install microk8s --classic --channel=latest/stable

Join the Group

sudo usermod -a -G microk8s $USER
sudo chown -f -R $USER ~/.kube

Exit and log back to the VM

Check if microk8s is up

microk8s status --wait-ready

If the above command does not return any output, it is likely that an error occured.
Remove the same command without the --wait-ready flag to know any errors and/or warnings.

	Create a link/alias
	sudo snap alias microk8s.kubectl kubectl

Now use mkctl like kubectl.
If you DONT want the alias then use “microk8s.kubectl” command similar to “kubectl”

Enable the dns and ingress services

microk8s enable dns

microk8s enable ingress

Install Araali and start the assessment

Follow the instructions in the getting started post [https://araali-networks-api.readthedocs.io/en/latest/gettingstarted.html#]

Install an Opensource App

Download sock-shop from Github

git clone https://github.com/ashish234/sock-shop.git

	Create a namespace
	mkctl create ns sock-shop

Deploy the yaml file

mkctl apply -f sock-shop/sock-shop.yaml -n sock-shop

Look into the services and mark the port for NodePort service “front-end”

[image: kubectl get svc -A]
In this case its running on 30001

Open a browser and type your VM’s IP:30001

[image: sock shop frontend UI]

 Getting started with microk8s (Mac)

Getting started with microk8s (Mac)

This is an end-to-end guide on how to test Araali on Canonical’s MicroK8s and use an opensource microservice app (sockshop). The most important thing is to ensure things are running at every stage before you can proceed to the next.

Install MicroK8s using Homebrew

Install Homebrew

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Once Homebrew is installed, you can proceed with Microk8s

Install MicroK8s

brew install ubuntu/microk8s/microk8s

microk8s install

Note: Say yes to multipass install (above)

Check if microk8s is up:

microk8s status --wait-ready

Before installing dns and storage, ensure the cni is up and running by executing:

microk8s kubectl get pods -A

Enable the dns and ingress services:

microk8s enable dns

microk8s enable ingress

Before proceeding further, ensure dns and ingress are up and running by executing:

microk8s kubectl get pods -A

Install Araali

Follow the instructions in the getting started post [https://araali-networks-api.readthedocs.io/en/latest/gettingstarted.html#]

Installing an Opensource App

Download sock-shop from Github:

git clone https://github.com/ashish234/sock-shop.git

Create a namespace:

microk8s kubectl create ns sock-shop

Deploy the yaml file:

microk8s kubectl apply -f sock-shop/sock-shop.yaml -n sock-shop

Look into the services and mark the port for NodePort service “front-end”:

microk8s kubectl apply get svc -n sock-shop"

[image: kubectl get svc -A]
In this case its running on 30001

Open a browser and type your VM’s IP:30001

[image: sock shop frontend UI]

 Getting started with minikube (Mac)

Getting started with minikube (Mac)

Minikube is a tool to setup a single node Kubernetes cluster. We will setup a single node cluster with the VirtualBox driver.

Install Minikube

Install Minikube using Homebrew

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Once Homebrew is installed, you can proceed with Minikube

brew install minikube

If which minikube fails you may have to remove the old minikube links and link the newly installed binary.

brew unlink minikube
brew link minikube

Install Minikube from binary

For X86:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-darwin-amd64
sudo install minikube-darwin-amd64 /usr/local/bin/minikube

For ARM:

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-darwin-arm64
sudo install minikube-darwin-arm64 /usr/local/bin/minikube

Install VirtualBox

brew install --cask virtualbox

Get the 4.19.94 based minikube.iso

Get the iso from s3://araalinetworks.cf/minikube.iso to /tmp/minikube.iso:

curl -o /tmp/minikube.iso https://s3-us-west-2.amazonaws.com/araalinetworks.cf/minikube.iso

Start the Minikube Kubernetes cluster

minikube start --iso-url=file:///tmp/minikube.iso --driver=virtualbox

[image: After minikube install]
Check status

minikube status

kubectl get pods -A

Deploy an application

kubectl create ns guestbook
kubectl apply -n guestbook -f https://raw.githubusercontent.com/kubernetes/examples/master/guestbook/all-in-one/guestbook-all-in-one.yaml

Check the status

[image: After minikube install]

 Getting Started with SIEM Integration

Getting Started with SIEM Integration

This is a guide on how to integrate Araali with supported SIEM products

Install Araali

Follow the instructions in the getting started post [https://araali-networks-api.readthedocs.io/en/latest/gettingstarted.html#]

This sets up and authorizes Araalictl for local use.

Integration with ElasticStack

Configure the TCP input plugin to accept json data. Open the existing LogStash config file
and add the following to the input plugin list.:

input {
 tcp {
 port => 9099
 codec => "json"
 }
}

Restart the LogStash service for the configuration to take effect.

sudo systemctl restart logstash

Check netstat to make sure LogStash has started listening on the chosen port.

sudo netstat -lntp | grep 9099

Start Araali Collector

Start the Araali Collector to submit Araali data to the configured LogStash TCP input port.

./araalictl api -stream-start -stream-tcp=0.0.0.0:9099 -out=json -stream-cnt=1000

Check status

./araalictl api -stream-status

Sentinel Integration

Install logstash on a VM .:

$ wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
$ sudo apt-get install apt-transport-https
$ echo "deb https://artifacts.elastic.co/packages/7.x/apt stable main" | sudo tee -a /etc/apt/sources.list.d/elastic-7.x.list
$ sudo apt-get update && sudo apt-get install logstash

Install Azure Sentinel Plugin for Logstash on the vm .:

$ sudo /usr/share/logstash/bin/logstash-plugin install microsoft-logstash-output-azure-loganalytics

Figure out workspace id, primary key from Azure log analytics workspace settings as below

[image: Figure out workspace id, primary key from Azure log analytics workspace settings]
Add workspace key to logstash keystore and then create logstash config as below. Finally, restart logstash .:

$ sudo mkdir -p /usr/share/logstash/config
$ sudo /usr/share/logstash/bin/logstash-keystore create
$ sudo /usr/share/logstash/bin/logstash-keystore add WS_KEY

$ cat /etc/logstash/conf.d/araali_sentinel.conf
input {
 tcp {
 port => 9099
 codec => json
 }
}
output {
 microsoft-logstash-output-azure-loganalytics {
 workspace_id => "<your_workspace_id>"
 workspace_key => "${WS_KEY}"
 custom_log_table_name => "araaliAlertsTable"
 plugin_flush_interval => 5
 }
}

$ sudo systemctl restart logstash.service

Now start araalictl stream to fetch alerts .:

./araalictl.linux-amd64 api -stream-start -stream-tcp=0.0.0.0:9099 -out=json -stream-cnt=100

Then we should be able to see the logs getting ingested under our workspace in azure sentinel > logs > tables tab

Useful links

https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/7.14/running-logstash.html
https://docs.microsoft.com/en-us/azure/sentinel/connect-logstash
https://github.com/Azure/Azure-Sentinel/tree/master/DataConnectors/microsoft-logstash-output-azure-loganalytics
https://www.elastic.co/guide/en/logstash/current/working-with-plugins.html
https://www.elastic.co/guide/en/logstash/current/keystore.html

 Getting Started with Kubernetes

Getting Started with Kubernetes

Supported/Verified Managed Cloud K8s

	AWS EKS - AmazonLinux (default) and Ubuntu node VMs

	GCP GKE - CoS (default) and Ubuntu node VMs

	Azure AKS - Ubuntu running default Kubernetes (v1.18) or later.

	Canonical MicroK8s

	RancherD

Prerequisites

	Cluster should have egress port 443 open to allow Araali to talk to the backend.

Araali UI Login

	Open a chrome browser and go to Araali Console [https://console.araalinetworks.com]

[image: Araali Sign-In]

	If your email is already registered and your business email uses Google service, then use “Sign in with Google”. Otherwise, click on “Need Help Signing In?” which will open “Forgot Password?”. Then, complete the steps to sign in to the console.

	You are in!!

	Now, in the left-hand panel, go to Administration and then Araali Tools. You have to come back to this page to authorize Araalictl

[image: Araali Authorization Dashboard]

Fortifying a k8s Cluster

Follow the steps below to fortify a Kubernetes cluster (same place where your k8s control plane is running).

[image: k8s Flowchart]

	
	Download Araalictl
	On Linux:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64

On Mac:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.darwin-amd64

	Make it executable:

chmod +x araali*
ln -sf araali* araalictl

	Authorize araalictl:

sudo ./araalictl authorize <email-id>

	Now go to Araali UI >> Administration >> Araali Tools to approve the araalictl session.

	Check if araalictl is installed:

./araalictl version -v

	Check current context, the name with “*” is the one you are pointing to right now:

kubectl config get-contexts

	Fortify your cluster, araalictl and kubectl running on the same machine:

./araalictl fortify-k8s -auto -tags=zone=<optional-zone-override> -context=<context of k8s cluster>

Optional: If araalictl and kubectl are not running on the same machine:

Create yaml file to fortify your cluster
./araalictl fortify-k8s -tags=zone=<optional-zone-override> -context=<context of k8s cluster>
The above command will generate araali_k8s.yaml file. Copy it to the k8s control plane (where kubectl is running) and then apply
kubectl apply -f araali_k8s.yaml

Check if Araali is Installed

Araali should be running in two namespaces (1) araali-operator and (2) kube-system:

kubectl get pods -A

[image: Kubectl Pods]

Setting up Araalictl in the CM VM

	Download Araalictl

Linux:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64

Mac:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.darwin-amd64

	Make it Executable:

chmod +x araali*
ln -sf araali* araalictl

	Authorize Araalictl:

sudo ./araalictl authorize <email-id>

	Check if Araalictl is installed:

./araalictl version -v

	Optional - Generate and add ssh-key (if Araalictl is running on the VM you wish to fortify)

	If you don’t have id_rsa.pub in your ~/.ssh account:

ssh-keygen

	Copy it to authorized_keys to allow ssh localhost:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Fortifying target VMs in your Cluster

	Fortifying Remotely:

./araalictl fortify-live -fortify -tags=zone=<zone_name>,app=<app_name> vm1

	Fortifying Localhost:

./araalictl fortify-live -fortify -tags=zone=<zone_name>,app=<app_name> localhost

	Updating Zone, App tags:

./araalictl fortify-live -add -tags=zone=<updated_zone>,app=<updated_app> <remote_user>@<remote_host>

For wider use, we recommend to run Araali on the same machine as your Configuration Management Tool (Ansible, Salt, Puppet, Chef, etc.)

Sample K8s Microservice to Test

Google Cloud Platform eCommerce Demo [https://github.com/GoogleCloudPlatform/microservices-demo]
Clone from Github:

git clone https://github.com/GoogleCloudPlatform/microservices-demo.git

	Create namespace or run it in default namespace:

kubectl create ns gshop

	Run the microservice:

cd microservices-demo/release
kubectl apply -f kubernetes-manifests.yaml -n gshop

	get URL of the frontend:

kubectl get svc -A

Araali Dashboard

Go back to the Araali UI and click dashboard. You can see an inventory of your assets covered as well as detailed audits of your communication.

[image: Araali Dashboard]

To Uninstall Araali

To uninstall if araalictl and kubectl are on the same machine:

./araalictl fortify-k8s -delete -context=<context of k8s cluster>

Otherwise, delete the yaml file:

kubectl delete -f araali_k8s.yaml

To Uninstall Remotely:

./araalictl fortify-live -unfortify <remote_user>@<remote_host>

To Uninstall Locally:

./araalictl fortify-live -unfortify localhost

 Getting Started with Rafay

Getting Started with Rafay

Prerequisites

	Registered with Rafay and account created

	
	Register with Araali to create an account to:
	
	Access the UI dashboard

	Install araalictl and authorize it

	Help with generation of Helm values.yaml

Araali UI Login

	
	Open a chrome browser and go to [Araali Console](https://console.araalinetworks.com)
	![Araali Sign-In](images/updated-araali-console-signin.png “Araali UI Sign-In”)

	Click Sign Up to register

	You are in!!

	
	Now, in the left-hand panel, go to Administration and then Araali Tools. You will use this page to authorize Araalictl
	![Araali Authorization Dashboard](images/araali-auth-dash.png “Araali Authorization Dashboard”)

Generating Helm values.yaml

__Follow the steps below to generate a values.yaml file to use with Araali Helm chart for your cluster.__

Setup

	Download Araalictl
* On Linux

`console
curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64
`

	
	On Mac
	`console
curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.darwin-amd64
`

	Make it executable
`console
chmod +x araali*
ln -sf araali* araalictl
`

	Authorize araalictl
`console
sudo ./araalictl authorize <email-id>
`

	Now go to Araali UI >> Administration >> Araali Tools to approve the araalictl session.
![Araalictl Approval](images/araalictl-approve.png “Araalictl Approval”)

Execution

	
	Check if araalictl is installed
	`console
./araalictl version -v
`

	
	Generate helm values::
	`console
./araalictl fortify-k8s -out=helm > /tmp/values.yaml
`

Create Rafay Repository for Araali Helm chart access

Add Araali Helm repository to Rafay
- [Create Rafay Araali Helm Registry](https://console.rafay.dev/#/app/repositories)

![Create Araali Helm Repo in Rafay](images/rafay-araali-helm-registry.png “Create Araali Helm Repo in Rafay”)

The Rafay repository will be used in the Araali addon below

Create Rafay AddOn for Araali Firewall

Add Araali addon to Rafay
- [Create Rafay Araali AddOn](https://console.rafay.dev/#/app/addons)

	Click on New AddOn
![Create Araali AddOn in Rafay](images/rafay-araali-new-addon.png “Create Araali AddOn in Rafay”)

	Click on New Version
![Create Araali AddOn Version in Rafay](images/rafay-araali-new-addon-version.png “Create Araali AddOn Version in Rafay”)

	Upload the previously created values.yaml file
`console
Chart Name: araali-fw Chart Version: 1.0.0
`

4. Edit the values.yaml in Rafay to get the runtime clustername from Rafay.

![Edit values.yaml in Rafay](images/rafay-araali-new-addon-edit.png “Edit values.yaml in Rafay”)

The Rafay addon will be used in the Araali Blueprint below

Create Rafay Blueprint that uses Rafay AddOn

Add Araali blueprint to Rafay
- [Create Rafay Araali Blueprint](https://console.rafay.dev/#/app/blueprints)

	Click on New AddOn
![Create Araali Blueprint in Rafay](images/rafay-araali-new-blueprint.png “Create Araali Blueprint in Rafay”)

	Click on New Version
![Create Araali Blueprint Version in Rafay](images/rafay-araali-new-blueprint-version.png “Create Araali Blueprint Version in Rafay”)

	Use the addon created above in the add AddOn section

This blueprint will be applied to the cluster

Enable Rafay Blueprint on the cluster

Add Araali Blueprint to Rafay
- [Create Rafay Araali Blueprint](https://console.rafay.dev/#/app/blueprints>)

	Click on the settings wheel icon and select Update Blueprint
![Add Araali Blueprint to cluster](images/rafay-araali-cluster-add-blueprint.png “Add Araali Blueprint to cluster”)

	Pick the Blueprint and Version created in previous step
![Add Araali Blueprint Version to Cluster in Rafay](images/rafay-araali-cluster-save-blueprint.png “Add Araali Blueprint Version to Cluster in Rafay”)

Once the changes are saved, the Araali add on is __activated in the cluster__.
Check for the sync to finish and visit the Araali Dashboard for instant visibility into your cluster.

Araali Dashboard

Go back to the Araali UI and click dashboard. You can see an inventory of your assets covered as well as detailed audits of your communication.

![Araali Dashboard](images/araali-dash.png “Araali Dashboard”)

Uninstalling Araali

Select the default blueprint and apply it to the cluster

 Guide for Templates

Guide for Templates

Overview

There is a marketplace for shareable App policies. In the UI sidebar, there is a section labeled “Templates”.
Araali has started publishing public templates for well-known apps starting with Araali apps. Private templates can be created
to auto-approve based on pattern matching, and user contribution to the marketplace will be possible in the future
(today the public policies are Araali-controlled).

These templates are not acted upon by default; they are only intended for people who want to cruise control by putting
the approval process on auto-pilot (this is based on published and community-reviewed App patterns). These templates can
be stopped with the click of a button. It is also possible to do all of this with APIs.

Enabling the “araalifw-kube” template [https://vimeo.com/573261476] will auto-approve all Araali links and
suppress any alerts coming from Araali’s app (Daemonset/Operator).

Please note that the public template for Araali is still being tested internally. It should be safe for use:
it just may not be comprehensive or complete yet.

Guide for Araali SW Template

Araali baselines your application communication and presents them as
identity-based links that can then be accepted as policy. This means no
handwriting policies, everything is automatically discovered.

One of the easier ways to accept policies is through UI Templates. Araali has
published a template for its own software in the “Public” folder that can be
used to auto-accept Araali’s own policies.

When to use Templates

Templates are particularly useful when:

	You are an app owner and want to publish your app’s profile into a
marketplace that anyone can use and benefit from. Ideally you want to publish
to the marketplace whenever there are app changes that necessitate a refresh.

	You have common patterns that apply across app/service lenses. You can define
patterns in template once, and apply it across lenses to do the
greening/policy-accepting based on pattern matching.

	You want to edit/customize a node (say use .* as regex for the pid in
snapd binaray path). You can alternatively select links and edit them
individually (repeating the editing to put the .* on a per link basis). The
benefit of using template is that you can edit a node once, and add new links
to the template. The node editing is automatically inherited as you add a
link to an existing template. This is only available via api currently. We
are trying to get it to UI sometime soon.

Applying Araali Template in UI

In the Araali UI, go to the Public Template and click on the download icon next to “araalifw-kube” template.

[image: Public Araali Templates]
This will open a window. The template is very flexible and allows you to further customize using regex. We recommend that you use the template as is. You can change the name of the template, check the box “search and use continuously” and then save the template.

[image: Saving Public Template as Private]
This will instantiate a local copy of the template in your “Private” folder. If you go to the folder you can see the template running. If you want to stop the template, you can click on the orange stop button.

[image: Saving Public Template as Private]
Now if you go back to your kube-system app and refresh the page, you will see all the links from araali-fw pod green.

[image: Saving Public Template as Private]

Programmatic Manipulation

Get

Get all templates. It is possible to optionally filter for public templates or access a specific template.

Command Line

Get all templates
./araalictl api -list-templates

Get only public templates
./araalictl api -list-templates -public

Specify a template
./araalictl api -list-templates -template=<template>

Python

Without params it will get all templates
Use public=True explictly to get the subset that is public
Optionally specify template name as string
api.Templates(public=False, template=None)

Rename

Rename an existing template

Command Line

Copy the output of the following
Use existing template name
./araalictl api -list-templates -template=<old_template>

"i" to insert at cursor, "a" for after cursor, and "o" for line above cursor
vi edit_template.txt
Paste previously-copied output
Change existing name to desired name
Esc to exit edit mode in vi
“:wq” to quit once in control mode
cat edit_template.txt | ./araalictl api -update-template -template=<old_template>

Python

.rename(new_name)

Save

Save a link as a template

Command Line

Fetch links for desired zone-app
./araalictl api -fetch-links -zone z_name -app a_name
Copy desired link(s)
"i" to insert at cursor, "a" for after cursor, and "o" for line above cursor
vi za_template.txt
Paste previously-copied link(s)
Esc to exit edit mode in vi
“:wq” to quit once in control mode

Add "-use-template-link" to Search and Use Continuously
#
cat za_template.txt | ./araalictl -save-link-template

Python

App to template
app.template()

 Guide to Lenses

Guide to Lenses

Overview

Securing everything is a euphemism for securing nothing, or at best doing best-effort security.

Instead, confidently and precisely secure what matters, even in the light of an intruder within the premises.
Zero Trust performs security the way the Secret Service protects the President of the United States. At any point,
they need to know who the President is, where they are at all times, and who has access to them at all times.
It’s about identifying the protect surface, lensing concern, and creating focus.

Lenses are the minimum yet completely self-contained units that can be owned, reviewed, monitored, and enforced.
They can either be applications that Araali protects, or services that are used by Araali-protected clients.
By lensing concern, it is possible get to focus on one app or service at a time, wherever the concern may lie.

Turning enforcement on for an Araali-protected app means that only authorized clients can use the services
offered by the app (ingress). Should the app be compromised by an intruder, it won’t pollute the
environment or move laterally (egress), or even gain access to services that are internal to the app (internal).

Turning enforcement on for a service lens means that only approved apps from all Araali-protected assets
can ever access the service. If there is an intruder within the Araali-protected environment,
it doesn’t get the same access to the service, as your own legitimate apps would. A service, by definition, is
third-party, and Araali does not have presence in it. Therefore, the enforcement happens on the client side, and
it makes sure that only the correct identities get to access an external service from within your environment.

But before getting into enforcement, it is important to first identity what lenses are worth spending time on.
It is possible to pin important lenses to the dashboard, check the enforcement status, and toggle enforcement on or off
using the APIs.

Functions

Get

Get all Lenses along with owner info (if available). It is possible to
optionally get only enforced lenses or only starred lenses.

Command Line

get all lenses along with their enforcement status
./araalictl api -fetch-enforcement-status

use -enforced flag to fetch only enforced lenses
./araalictl api -fetch-enforcement-status -enforced

use a seperate command to fetch only starred lenses
./araalictl api -fetch-starred-lens

Python

Without params it will get all lenses
Use enforced=True, or starred=True explictly to get the subset that
is enforced/starred
api.Lens.get(enforced=True, starred=True)

Star

Star Lens.

Command Line

star zone-app lens
./araalictl api -zone=<zone> -app=<app> -star-lens

star service lens
./araalictl api -service=<fqdn/ip:port> -star-lens

Python

.star()

Unstar

Unstar all currently starred Lenses. It is like performing a factory reset and clearing the Araali dashboard.

Command Line

./araalictl api -clear-starred-lens

Python

api.Lens.unstar_all()

Monitor

Monitor a lens. You start getting emails when there is new activity in the lens

Command Line

subscribe to zone-app lens alerts
./araalictl api -zone=<zone> -app=<app> -subscribe-for-alert

subscribe to service lens alerts
./araalictl api -service=<fqdn/ip:port> -subscribe-for-alert

subscribe to directional alerts
./araalictl api -subscribe-for-alert -direction ingress_world, egress_world

Python

.monitor(email=None)

Unmonitor

Stop monitoring a lens. You stop getting emails for the lens

Command Line

unsubscribe from zone-app lens alerts
./araalictl api -zone=<zone> -app=<app> -unsubscribe-from-alert

unsubscribe from service lens alerts
./araalictl api -service fqdn/ip:port -unsubscribe-from-alert

Python

.unmonitor(email=None)

Monitor Perimeter

Monitor all lenses for alerts. You start getting emails when there are new alerts.

Command Line

subscribe to world alerts
./araalictl api -subscribe-for-alert -direction ingress_world,egress_world

Python

api.Lens.monitor_world()

Unmonitor Perimeter

Unmonitor all lenses for alerts. You will stop getting emails when there are new alerts.

Command Line

unsubscribe from world alerts
./araalictl api -unsubscribe-from-alert -direction ingress_world,egress_world

Python

api.Lens.unmonitor_world()

Enforce

Enforce Lens.

Command Line

"i" to insert at cursor, "a" for after cursor, and "o" for line above cursor
input the following
vi enforce_za.txt

for zone-app:
- zone_name: string
 apps:
 - app_name: string
 ingress_enforced: True
 egress_enforced: True
 internal_enforced: True

for service:
- dns_pattern: fqdn/ip
 dst_port: port
 new_enforcement_state: ENABLED

Esc to exit edit mode in vi
“:wq” to quit once in control mode

for zone-app
cat enforce_za.txt | ./araalictl api -enforce-zone-app

for service
cat enforce_za.txt | ./araalictl api -enforce-service

Python

.enforce(za_ingress, za_egress, za_internal, svc_ingress)
za_ingress: default=True
za_egress: default=True
za_internal: default=False
svc_ingress: default=True

Unenforce

Unenforce Lens.

Command Line

follow steps for enforce
but change True values to False
and "ENABLED" to "DISABLED"

Python

.unenforce(za_ingress, za_egress, za_internal, svc_ingress)
za_ingress: default=False
za_egress: default=False
za_internal: default=False
svc_ingress: default=False

Add Owner

Add lens owner.

Command Line

./araalictl api -update-lens-owner -email=<email> -zone=<zone> -app=<app> -owner-op=add
./araalictl api -update-lens-owner -email=<email> -service=<ip|dns>:<port> -owner-op=add

Python

.add_owner("<email>")

Del Owner

Add lens owner.

Command Line

./araalictl api -update-lens-owner -email=<email> -zone=<zone> -app=<app> -owner-op=del
./araalictl api -update-lens-owner -email=<email> -service=<ip|dns>:<port> -owner-op=del

Python

.del_owner("<email>")

 Slack

Slack

Our Slack is the main discussion space for the Araali Networks community.

Join our slack [https://join.slack.com/t/araali/shared_invite/zt-o3yeo8us-GRa7qtz4p0kcIVIBaIxWbA].

Video

Watch our videos.

	3-minute Intro video [https://vimeo.com/517546362]

	20-minute Demo video [https://www.demosondemand.com/dod_staging/app.js/html5/sessID/ARAA001/promotion_id/0/startTime/0/reseller_id/1571?eo=104116116112115058047047119119119046116104101100101109111102111114117109046099111109047122101114111116114117115116047068101109111082111111109046097115112120063115112061065114097097108105078101116119111114107115124124087101100032077097114032050052032050048050049032048053058053051058048053032071077084045048055048048032040080097099105102105099032068097121108105103104116032084105109101041#!/%23.YFs3g3CPViI.linkedin]

	1-minute Running Assessment video [https://vimeo.com/534920297]

Blog

Read our blog [https://www.araalinetworks.com/post].

	Motivation [https://www.araalinetworks.com/post/why-i-created-araali]

	End of traditional appsec [https://www.araalinetworks.com/post/end-of-traditional-appsec]

	Eliminate risk of stolen passwords [https://www.araalinetworks.com/post/passwordless-cloud-native-apps]

	Distributed Zero Trust [https://www.araalinetworks.com/post/ztna-vs-adzt]

	Complete Zero Trust Guide [https://www.araalinetworks.com/post/complete-guide-cn-security]

Contributing

This documentation is currently open-source, meaning you can submit pull requests on the GitHub page to change the
documentation.

Installation/Setup

Clone Repo

	Login into GitHub (or create your account)

	Setup ssh [https://github.com/settings/ssh/new] (upload your public key to github account)

	Fork the existing repo [https://github.com/araalinetworks/api] (top-right button)

	
	Clone the forked repo using ssh (not html)
	
	Click the clone button to get repo details for ssh

	git clone <repo link from step 4>

	Make changes (see How to Use rST Files)

	Push changes

	Submit pull request

	Keep fork synced to upstream by following the steps for UI on this link [https://docs.github.com/en/github/collaborating-with-pull-requests/working-with-forks/syncing-a-fork], then executing the following lines to get the synced-up changes on your laptop:

git pull -r
this line might fail
in that case, stash and pop your local changes
to make sure the pull goes through
git stash
git pull -r
git stash pop

Install sphinx-doc using your system installer

mac install:

brew install sphinx-doc

linux install:

sudo apt-get -y install sphinx-doc

Make sure sphinx-build is in your path

Let the installer prompt you for the path. Or see manual instructions below.

cd api/doc
sudo find / -name sphinx-build -print 2>/dev/null
export PATH=$PATH:<new_path_where_sphinx-build_is>

new_path_where_sphinx-build_is is where you have above sphinx-build

Eg: PATH="/usr/local/opt/sphinx-doc/bin:$PATH

cat ~/.zshrc

You can put this in your .bashrc or .zshrc so it is automatically set on next login/terminal

source ~/.bashrc

Set up Sphinx with Python

Follow this link [https://www.docslikecode.com/learn/01-sphinx-python-rtd/]

python3 -m venv ve-name
even when you open a new terminal next time, this is how
you get into the virtual environment
source ve-name/bin/activate
now all this goes into your virtual env - which is very isolated
and predictable environment to be in
next time there is no need to install these. Just entering your
virtual env gets you all the packages.
pip install sphinx
pip install sphinx_rtd_theme

Repeat these steps to see changes in action

make clean html

To run locally:
 open build/html/index.html

To run remotely:
 python -m http.server 8000
 In a browser, <ip_of_your_server>:8000

How to Use rST Files

To contribute to the documentation, some knowledge of rST is required. Below are some helpful links.

	Docutils or reStructuredText [https://docutils.sourceforge.io/rst.html]

	A reStructuredText Primer [https://docutils.sourceforge.io/docs/user/rst/quickstart.html]

	Documenting Your Project Using Sphinx — an_example_pypi_project v0.0.5 documentation [https://pythonhosted.org/an_example_pypi_project/sphinx.html]

	reStructuredText Primer - Sphinx Documentation [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#rst-primer]

	Sphinx Tutorial [https://sphinx-tutorial.readthedocs.io/]

	Sphinx Cheat Sheet [https://sphinx-tutorial.readthedocs.io/cheatsheet/]

	Online reStructuredText Editor [http://rst.ninjs.org/]

 Index

Index

 A
 | B
 | D
 | S

A

 	
 	
 accept()

 	built-in function

 	api.App (built-in class)

 	
 api.App.commit()

 	built-in function

 	
 api.App.iterlinks()

 	built-in function

 	
 api.App.review()

 	built-in function

 	
 api.auth()

 	built-in function

 	
 api.deauth()

 	built-in function

 	api.Link (built-in class)

 	
 	
 api.set_araalictl_path()

 	built-in function

 	araalictl.App (built-in class)

 	
 araalictl.App.Commit()

 	built-in function

 	
 araalictl.App.Refresh()

 	built-in function

 	
 araalictl.Authorize()

 	built-in function

 	
 araalictl.DeAuthorize()

 	built-in function

 	araalictl.Link (built-in class)

 	
 araalictl.SetAraalictlPath()

 	built-in function

B

 	
 	
 built-in function

 	accept()

 	api.App.commit()

 	api.App.iterlinks()

 	api.App.review()

 	api.auth()

 	api.deauth()

 	api.set_araalictl_path()

 	araalictl.App.Commit()

 	araalictl.App.Refresh()

 	araalictl.Authorize()

 	araalictl.DeAuthorize()

 	araalictl.SetAraalictlPath()

 	deny()

 	snooze()

D

 	
 	
 deny()

 	built-in function

S

 	
 	
 snooze()

 	built-in function

 Getting Started with Rafay

Getting Started with Rafay

Prerequisites

	Registered with Rafay and account created

	
	Register with Araali to create an account
	
	To access the UI dashboard

	To install araalictl and authorize it

	To help with generation of Helm values.yaml

Araali UI Login

	Open a chrome browser and go to Araali Console [https://console.araalinetworks.com]

[image: Araali Sign-In]

	Click Sign Up to register

	You are in!!

	Now, in the left-hand panel, go to Administration and then Araali Tools. You have to come back to this page to authorize Araalictl

[image: Araali Authorization Dashboard]

Generating Helm values.yaml

Follow the steps below to generate a values.yaml file to use with Araali Helm chart for
your cluster.

	
	Download Araalictl
	On Linux:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.linux-amd64

On Mac:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/araalictl.darwin-amd64

	Make it executable:

chmod +x araali*
ln -sf araali* araalictl

	Authorize araalictl:

sudo ./araalictl authorize <email-id>

	Now go to Araali UI >> Administration >> Araali Tools to approve the araalictl session.

[image: Araalictl Approval]

	Check if araalictl is installed:

./araalictl version -v

	Generate helm values:

./araalictl fortify-k8s -out=helm > /tmp/values.yaml

Create Rafay Repository for Araali Helm chart access

Add Araali Helm repository to Rafay Create Rafay Araali Helm Registery [https://console.rafay.dev/#/app/repositories]

[image: Create Araali Helm Repo in Rafay]
The Rafay repository will be used in the Araali addon below

Create Rafay AddOn for Araali Firewall

Add Araali addon to Rafay Create Rafay Araali AddOn [https://console.rafay.dev/#/app/addons]

Click on New AddOn

[image: Create Araali AddOn in Rafay]
Click on New Version

[image: Create Araali AddOn Version in Rafay]
Upload the created values.yaml file:

Chart Name: araali-fw Chart Version: 1.0.0

Edit the values.yaml in Rafay to get the runtime clustername from Rafay.

[image: Edit values.yaml in Rafay]
The Rafay addon will be used in the Araali Blueprint below

Create Rafay Blueprint that uses Rafay AddOn

Add Araali blueprint to Rafay Create Rafay Araali Blueprint [https://console.rafay.dev/#/app/blueprints]

Click on New AddOn

[image: Create Araali Blueprint in Rafay]
Click on New Version

[image: Create Araali Blueprint Version in Rafay]
Use the addon created above in the add AddOn section

This blueprint will be applied to the cluster

Enable Rafay Blueprint on the cluster

Add Araali Blueprint to Rafay Create Rafay Araali Blueprint [https://console.rafay.dev/#/app/blueprints]

Click on the settings wheel icon and select Update Blueprint

[image: Add Araali Blueprint to cluster]
Pick the Blueprint and Version created in previous step

[image: Add Araali Blueprint Version to Cluster in Rafay]
Once the changes are saved the Araali add on is activated in the cluster.
Check for the sync to finish and visit the Araali Dashboard for instant visibility into your cluster.

Araali Dashboard

Go back to the Araali UI and click dashboard. You can see an inventory of your assets covered as well as detailed audits of your communication.

[image: Araali Dashboard]

To Uninstall Araali

Select the default blueprint and apply it to the cluster

 Guide for Araali GoShelly

Guide for Araali GoShelly

Araali GoShelly is an open source tool that helps security teams safely test their detect and response readiness (the fire drill for SIEM/SOAR/EDR/NDR/XDR investment)
for backdoors. This is typical when supply chain vulnerabilities like remote code execution (RCE) are exploited and represents a doomsday scenario where an attacker
has full remote control capabilities based on the backdoor.

Installation

Similar to the deprecated version of this tool, Araali Shelly, GoShelly offers the option to run your own
backdoor and/or use the already running backdoor offered by Araali to listen for incoming connections.

Setup a backdoor service

To use your own backdoor server

On a k8s cluster install and configure GoShelly server using the following instructions.
NOTE: These installation steps assume that you have Helm and kubectl - the package manager and command line tool for k8s - installed and setup already.

	Add Araali’s Helm repository

helm repo add araali-helm https://araalinetworks.github.io/araali-helm/

	Install GoShelly Server

helm install goshelly-server araali-helm/goshelly-server

	Get the loadbalancer external IP for the client to connect to

kubectl get svc -n goshelly-helm

Save the external IP to the service named “goshelly-helm-port-forwarding” for later use, when setting up the GoShelly client.

Uninstall GoShelly Server:

helm uninstall goshelly-server

To use Araali’s backdoor server

Nothing. It’s already running. Follow the instructions below to dial to our backdoor server using GoShelly Client.

Setup GoShelly Client

On the machine, you wish to test the attack response readiness for, install and configure GoShelly Client
using the following instructions.

	Download GoShelly Client
On Linux:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/goshelly_linux

On Mac:

curl -O https://s3-us-west-2.amazonaws.com/araalinetworks.cf/goshelly_darwin

	Make it executable

chmod +x goshelly_*

	Run the below command to make the GoShelly Client dial out to the backdoor server

	
	If you choose to use Araali’s backdoor service use the command as shown below.
	For Linux:

./goshelly_linux assess

For MacOS:

./goshelly_darwin assess

	
	If you choose to use your own backdoor service, include the loadbalancer external IP address, we previously noted, using the IP flag in the assess command as shown below.
	For Linux:

./goshelly_linux assess --IP <IP_ADDRESS>

For MacOS:

./goshelly_darwin assess --IP <IP_ADDRESS>

	Wait for GoShelly to run on your system and return results. You may also check your Araali Console to view GoShelly in action.

_images/restapi3.png
@ Araali © APl Tokens

(& Dashboard >
$8 Runtime Summary
4 Runtime Audit
Time Token Generated! X oy
O Alerts N
5/5/2023, 2:45:20 PM ar@gmail.com
O Cloud Integration eyJ0eXAIOIIKVIQILCINbGCIOIISUZITNiIY.eylyb2xlljoiQWRtaWSpC3RyYXRvCil
sir Wi
S compute Lc 1sw
idr ciH
4 Templates RC Rz
A7 Bq
D> Manage Reels v 7Xk
AC Atc
& Support > Aa wi
s3 1bx
8 Administration > & i
q9 dix
grl Ng
® On-Boarding i =
Xt88BIWTF7INUDISTItNDHIOff7VVuSnbMepFsKbZy65SDIghNrxVRCKImEszs
>_ Araali Tools Se4zzsiig
3 AppsRemap
O PodsRemap
2 ashishkar@gm..

[b Cluster Fortifica

_ Copyright ©2019 Araali Networks

_images/restapi4.png
@ Araali ® APl Tokens

(& Dashboard >
$8 Runtime Summary
Y Runtime Audit

O Alerts 2N

@ Cloud Integration

Time.

5/5/2023, 2:45:20 PM

S compute

[4 Templates
D> Manage Reels
& Support >
8 Administration v
® On-Boarding
> Araali Tools

9 Users&Roles

@ AppsRemap
=}

Pods Remap
& ashishkar@gm..
[b Cluster Fortifica..

_ Copyright ©2019 Araali Networks

test-token

ashish kar@gmail.com

Generated By

ashish kar@gmail.com

E2]

_images/restapi1.png
@ Araali ® APl Tokens

[File Policies
S compute
[4 Templates
Time Name E-Mail Generated By

> Manage Reels
No data Available
& Support >

8 Administration v

@ On-Boarding
>_ Araali Tools

& Users &Roles

T Apps Remap

© PodsRemap

support@araali..

Jo

2, amk

Gb Cluster Fortifica...

O OpenAPI Doc
& console

[Logout Copyright © 2019 Araali Networks

_images/restapi2.png
@ Araali ®

[File Policies
S compute

[4 Templates
> Manage Reels

& Support >

8 Administration v

® On-Boarding
>_ Araali Tools

2y Users &Roles

T Apps Remap

O Pods Remap

support@araali...

Jo

2 amk

Gb Cluster Fortifica.

O OpenAPI Doc

@ console

[> Logout

API Tokens

Time Name] Generated By

No data Available

Generate Token

Token Name: | test:

Copyright © 2019 Araali Networks

_images/slack-webhook.png

_images/sock-shop-getsvc.png
azureuser@microk8s3:~$ mkctl get svc -A

NAMESPACE ~ NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

default kubernetes ClusterIP 10.152.183.1 <none> 443/TCP 9m35s
sock-shop carts-db ClusterIP 10.152.183.100 <none> 27017/TCP Sm24s
sock-shop carts ClusterIP 10.152.183.132 <none> 80/TCP Sm24s

sock-shop catalogue-db ClusterIP 10.152.183.2 <none> 3306/TCP Sm24s

Q/TCP

5m23s

ClusterIP 10.152. 145 <none>

sock-shop Sm23s
sock-shop payment ClusterIP 10.152.183.34 <none> Sm22s
sock-shop queue-master ClusterIP <none>

sock-shop rabbitmq ClusterIP

sock-shop shipping ClusterIP

sock-shop user-db ClusterIP

sock-shop user ClusterIP . <none>

azureuser@microk8s3:~$ ||

_images/rafay-araali-new-blueprint.png
New Blueprint

Name*

araali-fw

Description

CANCEL SAVE

_images/remote_fortification_flow.png
Customer

Env.

443

CM VM

Araali Backend

22

443

VM

_images/rafay-araali-new-addon.png
New Add-on
Configure a new addon that can be used in a custom cluster blueprint

@ Bringyourown (O Customize System Add-On

Name*
araali-fw

Type*
Helm 3

Artifact Sync

O Upload files manually @ Pull files from repository

Repository Type
O 6it @ Helm

Namespace *

default-araali-networks|

CANCEL

CREATE

_images/rafay-araali-new-blueprint-version.png
voue | PROJECT _ araabfrewall sshishgarzainenvoria.com - g)

pashboard [J Enable OPA Gatekeeper for this Blueprint
ashboard

Infrastructure
Add-Ons o the o
Cluste
Name Version
Cluster Templat araali-fw - Vo x~+ B

+ ADD DEPENDENCY

+ ADD MORE

Managed System Add-Ons

Cloud Credentials

Ingress Controller

Locations

Log Aggregation

Monitoring & Alerting Q

Upgrade Plans

VM Operator

Cluster
K8s Management Operator

kup/Restore >
DISCARD CHANGES & EXIT ‘SAVE CHANGES

nav.xhtml

 Table of Contents

 		
 Welcome to Araali Networks’ Community Edition!

_images/0134527c6b5d90898add259d5b6273ff1ef67f1c.png
9 Araali ®

© Dashbowrd
% Runtime .

Zones

© B
3
8

1 policies

0 Mens

8 compue

8 support >
o Adminsation >

& Logout

Templates

IR
R NN

.
~

~

apnbeckendey=s3
sppens>dmamoaws
—
appensans
——
aptgetuburcs

arai perator skt

rssioperorperimerer

s backendipy
“dpamas

[rerpe—

Search usacontinuously
PTr—
PmTP—
P —
Searc usecontinuously
Search . usacomtiuously

Soarch & s continuously

ERrp—"

Search 8 usa continuously

PRy p—"

®
©
©
®

°®

[T ————

A0~ Perimeer

_images/AraaliAuthn3.png
@ Araali ® Araali Tools

(5 Dashboard Araalict! Araali Fog

98 Runtime v

oo
88

Zones

©

Apps

Policies. Session ID/Araalict] ID s

o
£

Flows 7b1d-4929-01ed-8661

2

Alerts

D

Showing 1 rows
Compute

Support >

Q B 00

Administration v

2 ashishmkar@ya..

[> Logout

Copyright © 2019 Araali Networks

_images/AraalictlAuthorize.png
azureuser@azure-cm:~/araali$ sudo ./araalictl authorize
Please enter your registered email: ashishmkar@yahoo.com
Waiting to get authorized (session-id: 1616729315931130880). . .Done.
Downloading config default ...Done.
Upgrading araalictl...Downloading ARAALICTL
*++ rpc error rpc error: code = Unknown desc = tenant for agent Araalictl.ashishmkar@yahoo.cldon3rv211q40ml3elg.7b1d49a901ed8661 isnt present
downloaded araalictl-0.5.25.tgz
New version of araalictl is at ./araalictl.linux-amd64_v0.5.25
Done.

_images/14eb2c7c7203360bab49ea686f9a4695c50344da.png
Save as template

Template name: - monioring promethous->k8s

O client | service

- o8 -
00 [Sp— O+ 8 potrange e
parentprocesstiame okt ohim O s

aispiayproces prometheus O s

binaryName Torjprometheus O+ s

T r—

oo (G

_images/AraaliAuthn2.png
@ Araali ® Araali Tools

(5 Dashboard Araalict! Araali Fog

38 Runtime o

oo
88

Zones

©

Apps

Policies. Session ID/Araallict! ID et

o
=

Flows 1616729315931130880

2

Alerts

D

Showing 1 rows
Compute

Support >

S Approve Refresh
=

2 ashishmkar@ya..

Q B 00

[» Logout

e = 1O A vl Mt el

_images/UIdashboardwithstarred.png
9 Araali ® Dashboard

(@B staned Apps .4-— Starred/Important Apps R

38 Runtime . .A * o *
83 Zones 1 i
~ = i b cev i | to6b28a sase-sds-azes. |
& A §mmahcmswsammmm | wordpress | | osseacoosssaodsopinsghisfrre
1 Policies. is,n,,m i
% riows [remmeernares 0 %% Number of containers
a Aers nernal: 2.2 menai « <1 that make up the App
N ; Egress: 0 Egress 0 |
8 compute i Perimeter Egress: 0 Perimeter Egress: O |
@ s ’ o rnstachie 0
& mmrETm Containrs 4 e
B ez))
Runie Service visible to non-Araali Service visible internally, what Services accessing R
20 / Assets (incl. Internet) . 29 4 an adversary sees when ino > A~ external IPs/services -
-] &
e T TR
v Number of Clusters S & Number of Namespace [n} 29 . Number of Processes <
Compute Past7Days
3 =1 39 o
Virtual Machines. = Containers g Functions b

N yl y

_images/UIdevZone.png
@ Araali

(]
S

D

QA B oo

Dashboard

Runtime

S Apps
H1 Policies

2 Flows

Alerts
Compute
Library
Support
Administration

Logout

Zones

Starttime: 2021-03-31 11:02:53 . End time: now

1 1

=]

Ingress Zones

@D srowingress [Y —

* Q >

dev

Services

Perimeter Ingress: 27 27
Ingress: 4 6
Internal: 7 7
Egress: 4 6

Perimeter Egress: 19 30

Compute: 43
Virtual Machines: 4

Containers: 39

Pinned: 0

8

Egress

@D srowegress

& United States.

»

araalinetworks.com

& United States.

»

azmkssio

& United States.

_images/UIAlertRedstrut.png
@ Araali ® Policies

(8 Dashboard
Start time: 2021-03-31 11:02:53 . End time: now Filters: 0 @) Pinned: 0 Hidden: 0 Selected links: 0 M all = &

3 Runtime v

88 Zones
= Ingres sorvies -1) [—— =) (E—— &
[potaes () i () ezt P P—
Flows
£ Aere pe— po— == dev cluster/zone
S carmpits — —
O Library 2 = f d /
strutfrontend app/namespace
& Support > dev
strutfrontend kube-struts-pod.kube-struts-pod
o® Administration > containerd-shim
nactive open ports.8005, 8003 talinastartup Bootstrap

& Logout

n2 d3s

Inactive Ports

_images/VpcLock3.png
A4

®
]

m @

& Db v R

Araali

On-Boarding
Dashboard
Runtime Summary
Runtime Audit

Alerts

File Policies
Compute
Templates
Runtime Shots
Support
Administration

Logout

O]

Instances

Add Account

AWSTemplateFormatVersion: '2010-09-09'
Description: Creates IAM roles for Araali to query read APIs in ¢
Parameters:
PpEnableVECLoc]
Type: String
Description: Allow read-only access to Araali to query EC2 AE
Default: true
AllowedValues: [true, false]
Conditions:
CondEnableVPCLock:
Fn::Equals:
- true
- {Ref: pEnableVPCLock}

Copyright © 2019 Araali Networks

_images/VpcLock4.png
<« C @ us-west-2.console.aws.amazon.com/cloudformation/home?region=u u} $ & O (A (Update :

ES Articles % Bookmarks Teleport

aws

step1
Create stack

step2
Specify stack details

steps
Configure stack options

Step4.
Review

BS Other Bookmarks

D @ Oregonv ashishdev@ 126152069696 v

Create stack

Prerequisite - Prepare template

Prepare template
Every stack is based on a template. A template is 2 JSON or YAML fle that contains configuration information abou the AWS resources you want o include in the stack.

O Template i ready O Use a sample template O Create template in Designer

Specify template

A template is a JSON or YAML file that describes your stack's resources and properties.

Template source
Selecting a template generates an Amazon 53 URL where it will be stored.

© Amazon 53 URL

‘ © Upload a template file

Upload a template file

8596932541236987-aws-templateyaml

JSON or YAML formatted file

S3URL: https://s3.us-west-2.amazonaws.com/cf-templates-1w2cu8kw5x3rm-us-west-2/2023-03-08T134952.801Zihk-8596932541236987-
aws-templateyaml

Cancel

_images/UIdevzoneapp.png
@ Araali ®

(8 Dashboard

38 Runtime M
83 Zones

D

Alerts
Compute

Library

Support >

Administration >

QA ® o

> Logout

Apps

 Q

dev
kube-system

Services

Perimeter Ingress: 10 10

Ingress:

Internal

Egress: 1 3

Perimeter Egress:
Compute

Virtual Machines: O

Containers: 13

* @ >

dev

sock-shop

Services

Perimeter Ingress: 1 11
Ingress: O
Internal
Egress: 0

Perimeter Egress: O

Compute

Virtual Machines: O

Containers: 23

* @ >

dev

strutfrontend

Services

Perimeter Ingress: 1 1
Ingress: O

Internal: O

Pinned: 0

microsoftonline.com

& United States

»

visualstudio.com

& United States

»

windows net

& United States

_images/VpcLock2.png
A4

®
]

D X

m @

& Db v R

Araali ® Instances

On-Boarding
Dashboard
Runtime Summary

Runtime Audit
; A Add Account

Alerts

File Policies
Compute

Templates

Runtime Shots >
Support >
Administration >

Logout

Copyright © 2019 Araali Networks

Cloud Provider:| v

Account Id:| | 8596932541236987

Features: Bl VPC Lock

_images/VpcLock7.png
araali-clou

@

X

[[vetete | [update || stackacions v][cremestack v

stack info ‘ Events ‘ Resources ‘ Outputs ‘ Parameters ‘ Template ‘ Change sets

Events (5)

Q search events

Timestamp

2023-02-09 12:25:24
UTC-0800

2023-02-09 12:25:22
UTC-0800

2023-02-09 12:24:57
UTC-0800

2023-02-09 12:24:56
UTC-0800

2023-02-09 12:24:52
UTC-0800

Logical ID

araali-cloud-integration

araalivPCLocklAMRole

araalivPCLocklAMRole

araalivPCLocklAMRole

Vpclock-venkat-meta

Status

© CREATE_COMPLETE

© CREATE_COMPLETE

© CREATE_IN_PROGRES
s

© CREATE_IN_PROGRES
s

© CREATE_IN_PROGRES
s

Status reason

Resource creation
Initiated

User Initiated

_images/VpcLock5.png
< C @ us-west-2.console.aws.amazon.co t e) G # O @ (update :)

B3 Articles % Bookmarks Teleport ES Other Bookmarks

aws Q £ @ Orgonv ashishdev @1261-5246-9696 ¥

CloudFormation > Stacks > Create stack

step1

Specify stack details

Create stack

Step2 Stack name
Specify stack details
Stack name
Step3
Configure stack options araali-cloud-integration

Stack name can include letters (A-Z and a-z), numbers (0-9), and dashes (-

step4
Review araali-cloud-integration
Parameters

Parameters are defined in your template and allow you to input custom values when you create or update a stack

pEnableVPCLock

Allow read-only access to Araali to query EC2 APls.

-

T

_images/VpcLock6.png
< C @ us-west-2.console.aws.amazon.com/cloudformation/home?regio t e i} G $ & O (A (Update i)

B3 Articles % Bookmarks Teleport ES Other Bookmarks

aws £ @ Orgonv ashishdev @1261-5246-9696 ¥

SNS topic ARN

No notification options
There are no notification options defined

Stack creation options

Timeout

Termination protection
Disabled

» Quick-create link

Capabilities

The following resource(s) require capabilities: [AWS::1AM::Role]

This template contains Identity and Access Management (IAM) resources. Check that you want to create each of these resources and that they have the

minimum required permissions. In addition, they have custom names. Check that the custom names are unique within your AWS account. Learn more [

Iacknowledge that AWS CloudFormation might create IAM resources with custom name:

_images/after-app-remapping.png

_images/aks-voting-app-new.png
+aw

.= +nam
l B .
*awm it
== i —
+am . mo
[re— s
+am
[—— B

+amo)

\ pura—

| #am

+am

+amo

pura—

+am

+am

+amo

[ria—

[——

_images/VpcLock8.png
@ Araali ®

Dashboard

® G

Runtime Summary

X

Runtime Audit

O Alerts (a

File Policies

0 @

Compute

oY

Templates

Instances

Region: us-west-2

VPC ID: vpc-002479beage3c019d

Total 75 Monitored 66 Unmonitored 9

Region: us-west-2 [Ja)

VPC ID: vpc-0a12c29759d856fcd

Total7 Monitored O Unmonitored 7

Region: us-west-2
VPC ID: vpe-3c69a944

Total54 Monitored 18

Region: us-west-1
VPC ID: vpc-6fd8faos

Total10 Monitored O

[X:)

Unmonitored 36

Unmonitored 10

_images/addPodLabel.png
= Apps Remap

sl

u zone asp Pod-Labal Key
B kesazure gshopj22 app
W kesazure sock-shop app
Add Pod label X

Zone: | demo-enforcement

App: word-press.

Pod label key:

Copyright © 2019 Araali Networks

_images/alerts-subscribe-in-araali.png

_images/appRemapButton.png
@ Araali @

(& Dashboard

3 Runtime v
O system
0O zone

A Flows

D

Alerts

00

Compute
Templates

Support >

AR R

Administration v

>~ Araali Tools

8¢ Users & Roles

2 support@araali...
2 amk

@ console

[Logout

Apps Remap

m Zone
W kesazure
W kesazure

Copyright © 2019 Araali Networks

App
gshopj22

sock-shop

Pod-Label Key

app

app

_images/aks-voting-app.png
fot e PPN

*am

+am

. mo

peympmsea

*am

.

+amo
plra—

o

+am

+awm

s

+amo

plra—

o

+am

*am
-

+amo

[ria—

_images/alerts-in-slack.png
& ©) Q Search Araali Networks

Araali Net... ~ @ ;‘?achltaAgasthy <

1 More unreads v
ANA app 1:02 PM Today

whereabouts

Araali Networks Alerts (nightly)

. Direct messages Detected lateral movement attempted @ Wed, Mar 31, '21 19:59:28 UTC
Process /bin/yum Launched by sudo in Zone nightly App :ab_vm_client:
+ To) 169.254.169.254:80
Seen 1time

Araali Networks Alerts (nightly)

Detected external communication attempted @ Wed, Mar 31, '21 19:59:48 UTC

Process ab Launched by sshd in Zone nightly App :ab_vm_client:
To @ ec2.us-west-2.amazonaws.com:80
Seen 1 time

Araali Networks Alerts (nightly)

Detected external communication attempted @ Wed, Mar 31, '21 19:59:28 UTC
Process /bin/yum Launched by sudo in Zone nightly App :ab_vm_client:
To @ amazonlinux.us-west-2.amazonaws.com:80

Seen 1 time

_images/araali-auth-dash.png
@ Araali ® Araali Tools

@ Dashboard Araatict] Araali Fog

88 Runtime v

© system
Zone

App Session 10/Araatict 1D

X D O

Flows, No data Available

Alerts

)

Showing 0 rows.

i}

Compute

Templates

Support >

ESGINCY

Administration

& Users & Roles

& ashish@araaline.

_static/minus.png

_images/araali-console-sign-in.png
Sign In

OR

Username

M rRemember me

Need help signing in?

Don't have an account? Sign up

_static/plus.png

_images/vmsupport.png
Virtual Machines

Ubuntu 20.04
Ubuntu 20.10

Distro Version Kernel Versions
Amzn Linux | Amazon linux 2 4.14.203-156.332.amzn2.x86_64 (kemel headers:
4.14.203-156.332.amzn2.x86_64)
RHEL Red Hat Enterprise Linux 8.3 4.18.0-240.1.1.e18_3.x86_64 (kernel headers: 4.18.0-240.1.1.e18_3.x86_64)
Cent0S centos: 8.1 4.18.0-147.8.1.e18_1.x86_64
Suse SUSE Linux Enterprise Server 15 | linux-5.3.18-24.37
sP2
Ubuntu Ubuntu 18.04.3 LTS 5.4.0-1025-gcp

5.3.0-1023-aws #25~18.04.1-Ubuntu (kemel headers:
linux-headers-5.3.0-1023-aws)

_images/updated-araali-console-signin.png
sign In

OR

Username

© Please enter a username

Password

M Remember me

Need help signing in?

Don't have an account? Sign up

_images/vpclock1.png
A4

@ console.araalinetworks.com/dashboard

Araali

©]

3£ Runtime Summary

2

D

& D v R

Runtime Audit

Alerts

File Policies
Compute
Templates
Runtime Shots
Support
Administration

Logout

Dashboard

Insights

o

Database Process

o

Critical Vulnerabilities Container

1

SaaS Service

o

Springéshell Vulnerabilities Process

1

Data Store as a Service

1

Home Exposed Process

o

Potential Command and Control
Process

21

Enforced Lens

5

World Exposed Process

4

Popular Service

o

Privileged Access Container

o

Password Exposed Process

_static/file.png

_images/araalictldownload.png
etworks.com/downloads

Q Araali © Downloads
(B Dashboard ;
araalictl
3 Runtime v . MDS
B8 Zones araalictl-0.5.22.tgz 1fec04b21e188e075711d483d438b071
@ Apps araalictl.darwin-amd64_v0.522 244699ab32de74f5edb3319e58cb0822
4 Policies araalictllinux-amdé4_v0.5.22 34dbdbe9e58c26bc3e73aelcf781190¢
A Flows
config
O Alerts
File MD5
S compute
araali_k8s.yaml d3942f34a333b99d5a577e61e888f7fb
g Library
& Support v

B Documents
> Videos

@ Contact

o® Administration >

[Logout

Copyright © 2019 Araali Networks

_images/araalipolicy0.png
10) Policies

@ Araali

(& Dashboard Start time:

38 Runtime v

88 Zones

2 Flows

)

Alerts Ingress

2ingress.

Compute
Library

Support >

q ® oo

Administration >

& Logout

A4

* =

azuref
s

1 Araali Protected Apps

210007 152120 [Jl enavme

Ingress Services

@D svovingress inis

@ Enforce ingress

systemd
ubelet
Iustflocal/bin/kubelet

838

) Internal Services

@D svovintermalinis

@ Enforce internal

Internal

& Internal

* =

azuref
wordpresswpapp-mariadbmariadb
containerd-shim
mysald
Jopt/bitnamijmariadb/sbinimariadbd

* =

azuref
wordpresswpapp-wordpresswordpress
app-entrypoint.
node
Joptfbitnamilnamifuntimejnode

* =

azuref
wordpresswpapp-wordpresswordpress
httpd
httpd
Jopt/bitnamilapachefbin/httpd

* =

azuref
wordpresswpapp-wordpresswordpress
node
mysal
lopt/bitnamilmysallbinjmysal

@4 @ azurer wordpress @ .

Bo-GEEEEN

o
<

Egress Senvices

@D svovogressiinks

@ Enforce egress

Egress

1Egress

World

3 External Services

*aw

0000
20

& United States

* a =

apiwordpressorg
443

& United States

* a =

downloadsuwordpressorg
443

& United States

MICROSOFT-CORP-MSN-AS-BLOCK

(&S

_images/araali-fw-container-green.png
@ Araali ®

(© Dashboard
3 Runtime o
© system

O zone

% Flows

D

Alerts

il

Compute
Templates

Support >

A PR

Administration >

> Logout

App

i T -

v

Araali Protected Apps

1Zones

Pod: araali-fw

* AW

Container: araali-fw

L

araalict!
loptfaraalifbin/guarantor

guarantor

L

gquarantor
Ioinjdash
sh

938

* R

quarantor-helpe
loptfaraalifbinfarype.
arype

L \

quarantor-helpe
Iustflibfyvm/java-T1-openjdk-amd64/bin/java
org owasp.dependencycheck App

L

quarantor-helpe
Iustfbinfwget
waet

oD 1 [.

. Selected inke: 0 W ol

amk fog.aws.araalinetworks.com
443443

* a w >

authdockerio
443-443

* a = >

cdn02 quayio
443443

* a w >

deservicesvisualstudiocom
443443

8 Washington, United States

* a w >

eastusmonitoring azure.com
443443

S washington, United States

* a = >

06b28d4-Bd96-4dd5-a3eB-099626005353.0ds opinsights azure.com
443443

S washington, United States

* a = >

£06b28d4-8d96-4dd5-a3e8-0996a€005353.0ms.opinsights azure.com

_images/araalictl-approve.png
@ Araali ® Araali Tools

(5 Dashboard Araslict! Araall Fog

8 Runtime .

© system

O zone

A Session 10/Arastict 1D Action

o
< process Ie4e8a3849765614080
<

Flows.

@ Tompates Approve Refresh
& Support 5
o

Administration @) -

2 Users & Roles

B AppsRemap

2 ashish@araaline.
2 amk

& console

(& Logout

_images/araalireportdetail1.png
databases; e Name and Process for Database
- service_key:

zone/k8s-cluster: dev

app/k8-namespace: sock-shop. catalogue-db. catalogue-db.

process: mysqld Is your app/db accessible from other pods
is_accessible: true /

url: https://console.araal inetworks. com/poli cies?zone=devaapp=sock-shop&start-time=2021-03-30T16X3AS9%3A58 . 00078 other=reset

dbaas: 4\
- service_key: .
“:.f‘é?sfiz Name and Port for the DB service
fqdn: mario.postgres.database. azure. com
is_accessible: true

url: https://console.aws .araalinetworks. con/pol icies?external -service-consuned=nario. postgres. database . azure. com

‘top_consumed_services: 4\
- service_key: Top Services consumed / Egress
port: 443
fqdn: dc.services.visualstudio.com
url: https://console.araalinetworks. com/policies?external -service-consumed=dc. services. visual studio. comi3A443&start -t ime=2021-03-30T16%3A59%3A58 . 000Z& other=reset

inactive_port_services:

- service_key:
zone/kBs-cluster: dev
app/kB-namespace: kube-systen. kube-proxy. kube-proxy

Inactive ports discovered during assessment

url: https://console.araal inetworks. com/poLicies?zone=deviapp=kube-systen&start-tine=2021-03-30T16X3A59%3A58 . 00078 other=reset

_images/araalireportdetail2.png
nternet_exposed_services: < ——— Internet visible services
- service_key:
zone: dev
app: ingress-nginx.nginx-ingress-controller.nginx-ingress-controller
process: nginx-ingress-controller
url: https://console.ans.araalinetworks. com/policies?zone=devBapp=ingress-nginxstart-time-2021-03-22T22%3A17%3A02 . 00078 other=reset

geo_or : ——— X
- mx:t:::r dev Egress organized by org and country

app/kB-namespace: kube-system.omsagent .omsagent
url: https://console. araal inetworks. com/poLicies?zone=deviapp=kube-systen&start- tine=2021-03-30T16X3A59%3A58 . 00078 other=reset
geo_service_info:
- dst_port: 443

country: US

starred_lenses:

~type: service 4\
service_name: dc.services.visualstudio. con:443

alerts: Important apps and services discovered

and auto-starred on the Ul dashboard

_images/araalipolicy1.png
A4

<]
®

QA ® ool b

v

Araali
Dashboard
Runtime

88 Zones

e e

_ @ Enforceingress @ Enforceinternal

% Flows
Alerts
Compute
Library
Support
Administration

Logout

10) Policies

sarcime: sauar1vizss [l enoime: now ers0 @ pimesso [wadeno [l soecstoi @B

Ingress Services =) Internal Services

@D svovingress inis @D svovintermalinis

Ingress Internal

& internal

2ingress.

* =

azuref
wordpresswpapp-mariadbgffriadb
containerd-shim
mysald
Joptbitnamilm;

fodbjsbin/mariadbd

1 Araali Protected Apps

Choose a
Highlight ez

=

azuref
wordpresswpapp-wordpresswordpress
node
mysal
loptfbitnami/mysal/binjmysal

0

MICROSOFT-CORP-MSN-AS-BLOCK

S United States

* a =

apiwordpressorg
443

S United States

* a =

downloadsuwordpressorg
443

S United States

ooze

_images/araalipolicyactiontaken.png
A4

<]
®

QA ® ool b

v

Araali ©

Dashboard

Runtime -

Zones.

e e

A Flows
Alerts

compute

Library

Support >
Administration >

Logout

Poli

es
Start time: 2021.0407 134253 . End tme:

Ingress Services

@D svovingress inis

@ Enforce ingress

Ingress

2ingress.

A4

1 Araali Protected Apps

* =

azuref
s
systemd
ubelet
Iustflocal/bin/kubelet

838

a0 @ pimes: o [iaens o

) Internal Services

@D svovintermalinis

@ Enforce internal

Internal

& Internal

* =

azuref
wordpresswpapp-mariadbmariadb
containerd-shim
mysald
Jopt/bitnamijmariadb/sbinimariadbd

* =

azuref
wordpresswpapp-wordpresswordpress
app-entrypoint.
node
Joptfbitnamilnamifuntimejnode

* =

azuref
wordpresswpapp-wordpresswordpress
httpd
httpd
Jopt/bitnamilapachefbin/httpd

* =

azuref
wordpresswpapp-wordpresswordpress
node
mysal
lopt/bitnamilmysallbinjmysal

o
<

@4 @ azurer wordpress @ .

Selectesinks o W al .-

Egress Services I3

@D svovogressiinks

@ Enforce egress

Egress

1Egress

World

3 External Services

*aw

0000
20

MICROSOFT-CORP-MSN-AS-BLOCK

& United States

* a =

apiwordpressorg
443

& United States

* a =

downloadsuwordpressorg
443

& United States

_images/araalireportsummary.png
runtime_summary:
url: https://console. araalinetworks. con/zones < Araali Ul to see your App as a diagram

sumary:

Hil

ST

zones/k8s-clusters
1

_ﬂ:vs/KES'"msvms Number of services internal to your namespace
internal_services 4__/

i Number of services consumed/ egress from the
consumed_services

27 namespace

provided_services
: 2 Number of services provided/ ingress into the

namespace

_images/template-araali-public-use.png
Import template

Check the box

Cancel

Low port:
443
High port:

443

Host: []*

searchmavenorg

Low port:

443

High port:

443

Host: []*

toolbox-data.anchore.o

Low port:

443

High port:

443

Search & use continuously

i

_images/sockshop-front-end-ui.png
€ > C A NotsSecure| 52146.21.75:30001 % @ G hO » @

Apps ES Other Bookmarks

OFFER OF THEDAY | Buy 1000 socks, get a shoe for free! Login | Register

y/ Weave?&fg?;— CATALOGUE ~

()
WE LOVE SOCKS! BEST PRICES 100% SATISFACTION
GUARANTEED
Fun fact: Socks were invented by woolly We price check our socks with trained monkeys
mammoths to keep warm. They died out because back at the office. Free returns oo T e N amaters are nom-

stupid humans had to cut their legs off to get

returnable once spoken to.
their socks.

_images/top_risk_buckets.png
@ Araali ® Dashboard

e BEOE

®

D

00

A B R

Runtime v .
Insights
O System
O Zone
2
O App Database Process
«§ Process
i Flows
13
Alerts
Critical Vulnerabilities Container
Compute
Templates.
Support > 0
Logéj Vulnerabilities Process
Administration >
Logout

1

Credentials Store

3

Data Store as a Service

46

Home Exposed Process

15

Saas Service

o

World Exposed Process

5

Popular Service

o

Potential Command and Control Process

Type “zoneapp."

105

Privileged Access Process

10

Critical Vulnerabilities Process

12

Privileged Access Container

Top Risk Buckets. Automatically Identified.

]

Q

_images/template-araali-public.png
9 Araali ®

(5 Dashboard

3£ Runtime ©
O sSystem
Zone
O App
A Flows
L0 Alerts
=)

8 compute
& Support >
o® Administration >

[Logout

Templates

Private Public

B & Name

B & grafana-kss

B & araalifw-kube

B & k8sAraaliOperatorPerimeter

Showing 3 templates

Author

Araali
Networks

Araali
Networks

Araali
Networks

Version

V1.0.0

V1.00

V1.0.0

_images/araali-dash.png
A4

® vV B 9 X

X do

T R

Araali [0}

Arazli Tools
Zones

Apps

Assets

Perimeter

Policies

Alerts

Flows

Downloads
Documents

Videos

Support
ashish@araalinetwo...
amkar

console

Logout

Dashboard

My Apps & Services

© You can pin zone + apps and services from the selector in the top-right

Inventory
4 = 30
Virtual Machines =) Containers E
n o 25 I
Perimeter Ingress - Internal -
1 oo 7
Zones. - Apps D
Alerts and Pinned past2¢hours FlOws
.
. 50
w0
0
20
® Pinned Apps. o 10

e itk New Alerte .

Past 7 Days
Past 7 Days

o

Functions s

20)

Perimeter Egress

Processes

Past 24 hours

_images/googleappfrontend.png
€ ONLINE

VINTAGE TYPEWRITER VINTAGE CAMERA HOME BARISTA KIT

_images/helm_workload.png
9 Araali ® Helm Workload

O App

@ Process

Click on ‘+’ and give a
workload id

Action

A Flows

Workload Name
Alerts .

o

No data Available

i

Compute
Templates

Support > Generate Workload X

g 0 R

Administration v
Workload Name: ‘ poc-eks-us-west-2 ’

® On-Boarding
2 Users &Roles
[0 AppsRemap

L support@araali...
2. meta-tap

o® APITokens

_images/compliance_diagram.png
¢ Network/Application
Firewalls

®* Two-Factor
Authentication
® |Intrusion Detection

e Access Control
® Two-Factor

Authentication e Performance
® Encryption Monitoring
AICPA’S TRUST ® Disaster Recovery
PRINCIPLES ® Security Incident

Handling

e Access Control

® Network/Application
Firewalls

® Quality Assurance
® Encryption Q Y

® Processing Monitoring

_images/fcceb237cbc38908195acde39a7ead87ebb27f4d.png
9 Araali ®

(5 Dashboard

3£ Runtime ©
O sSystem
Zone
O App
A Flows
0 Alerts
=)

S compute

& Support >
o® Administration >
[® Logout

Templates

Private Public

B/ Name Author
B, oaraalifw- ashish@araalinetworks.com

kube

Showing 1templates

Copyright © 2019 Araali Networks

State

Search & use continuously ®

_images/k8ssupport.png
Kubernetes

K8S K8S Version Worker Node OS. Kernel Version
Platform
EKS 1.16,1.17,1.18, Amzn Linux 2 4.14.186-146.268.amzn2.x86_64
4.14.193-149.317.amzn2.x86_64
4.14.198-152.320.amzn2.x86_64
GKE v1.16.15-gke.6000 | CoS 4.19.112+
v1.18.17-gke.1900 5.4.89+
v1.16.15-gke.6000 | CoS - ContainerD 4.19.112+
v1.18.17-gke.1900 5.4.89+
v1.16.15-gke.6000 | Ubuntu 18.04 5.3.0-1036-gke
v1.18.17-gke.1900 5.4.0-1036-gke
v1.19.9-gke. 1900 5.4.0-1039-gke
v1.14.10-gke.1504 | Ubuntu 18.04 - ContainerD 4.15.0-1069-gke
v1.16.15-gke.6000 5.4.0-1036-gke
v1.18.17-gke.1900
AKS Ubuntu 18.04 5.4.0-1031-azure
Digital Ocean |v1.20.2 Debian GNU/Linux 10 (buster) 4.19.0-14-amd64.
Micro-K8s | v1.19.9-34 Ubuntu 18.04.5 LTS 5.4.0-1041-azure
On-Prem Ubuntu 20.04.1 LTS 5.4.0-56-generic

_images/kubectl-pods.png
[ec2-user@ip-172-31-28-157 ~]$ kubectl get pods -A

NAMESPACE
araali-operator
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

NAME
servicediscovery-7bf987cbbd-tjgng
araali-ebpf-cuskh
araali-ebpf-wwsmz

aws-node-kréks

aws-node-w3tpl
coredns-5f897d799c-2nfql
coredns-5f897d799c-hwcad
kube-proxy-m8j2
kube-proxy-qvirr

READY
171
171
171
171
171
171
171
171
171

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

Socccseee

AGE
7s

7s

7s
2d20h
2d20h
2d20h
2d20h
2d20h
2d20h

_images/helm_workload_name.png
9 Araali ®

A Flows

Alerts .

File Policies

{2

i ©

Compute

Templates

® R

Support >

8% Administration v

(@ oOn-Boarding

> Araali Tools

2 Users &Roles

M@ Apps Remap

~ Support@araali...
A meta-tap

L
o® API Tokens

& console

[(® Logout

Cluster Fortification

Workload Name

Abhinav

poc-eks-us-west-2 Helm Yaml Generated!

smoke-jumper

araali:

Action

X

zone: Abhinav

Copyright © 2019 Araali Networks

£ 2]

_images/k8s-flowchart.png
Customer

Env.

Araali Backend

443

K8s control
plane

—

K8s cluster

443

_images/azure-workspace-id.png
& Chrome File Edit View History Bookmarks Profiles Tab Window Help & [F 00%Ed Wed1:23PM Q@
®®e M (v |uw |C (2 |B|B|B @ e |0 |e e viBIB|l®e x 5(9|u|9|[e(9|x |4 [@|2|a|e|[A]|+ °

<« C @ portalazure com/#@FireboltVentures.onmicrosoft.comresource/subscriptions/05ca3f6-{993-4743-8328-4d6558baebfalresourceGroups/DefaultResourceGroup-EUS/providers/Micr... ¥ [» (@ Pavsed) (Update 5

o e @& e

°

5 abhishekarsalnatior s
Saciana rrmourvaures & SRS
on branch tron
Your branch 1§ Allservices > Log Analytics workspaces > sentinel-test
wieces 148 Log Analytics work, « @ sentinel-test | Agents management x
firbort Ventures 57 Log Analytcs workspace
2 , 22w
[+ cexe T openreoein 5 Search Cmi+h « W Windowssenvers & Linux servrs :
74 E—
7 veniew f
7 [Fiterforany feld © © 0 Linux computers connected
| 7 Name Actiylog Gotologs P
| 7 | Access control (AM) 42PM
7l o Defautworkspace-05ca3fe-1993-4743 ! Download agent
8 efaitWorkspace-05ca316.1963.4743. Tags Dowrioad an agent for your operating system,then nstll and confgure it using the ks fo your workspace D
ord Youl need the Workspace 13 and Key o instal the agent.
- R B 2 Disgrose ond sobve problers
.| Dowrload inix Aget i
Jord Settings P
Y | Dowrioad and orbaurd agent or Linu
Jord 8 tds ‘W hitpsy/raw githubusercontent com/Microsofy/OMS-Agent.for-Linu/master/instaler/scipts/anboard_agent sh i
v | Y —
Jara 2 Agents coniguraton Workspace ID 74
% | 365,
sord Custom logs Prmary key [Regenerte |
\ | B Computer Groups B
v | Secondary key Regenerate
| Linked storage accourts 2
nothing added i
Gonianeietacns > Network soltion 5700
S S o o
aamisneigtacny General !
rects: conll Workspace summary
oot Total ok
e i workbooks .
* [new branch # Logs
Aready 13 10
aonisnecEtocnt # Solutons
Switenad to o
| © usage and estimated coss
Cirvene ranch i
amisheignncll page [1 ~of1 1l Properties]
] Evervtiiog wd
] oonneseracn -

Show All

_images/before-app-remapping.png

_images/rafay-araali-cluster-add-blueprint.png
ashish@araalinetworks.com - 5
AraliNetworks

A HOME | PROJECT araal

Dashboard Clusters

Your configured Clusters are listed below. You can manage individual clusters through the corresponding ACTIONS menu, or you can create a new cluster by clicking on the NEW CLUSTER button.

s Download kubeconfig | ® Manage Labels

Q Filter by Statuses Filter by Labels Filter by Blueprints

Infrastructure

Clusters (¥}

EVENTS " TRENDS

rafay-cluster-1

 ALers @ © @

KUBECTL (=] PODS

View
Type: () Amazon EKS cPy -—— Nodes 1 Reachability check : SUCCESS Last checkinafew sece UPdate Blueprint
Location: aws/us-west2 © Memory - Worker: 1 Control plane: ® HEALTHY Update EndPoints
: Workloads :) .
Created At : 03/08/2022, 05:07:25 PM PST 0 Operational Status : READY [Edit Labels
redentials Blueprint : araal GPUS 0 Provision Status : CLUSTER PROVISION COMPLETE
Blueprint Version : v1.0 Blueprint Sync : SUCCESS Download Kube Config
ueprint Version : v ueprint Syne For direct Kube API server access
Lt Kubernetes Version : v1.21.5¢ksbc4s71b

Download Cluster Config
Notifications : . DISABLED

Manage Cluster Sharing
Backup/Restore Settings
LRI Rows perpage: y ipectl Settings
Alerts Settings

Delete

p/Restore

Terms of Service Privacy Policy

_images/rafay-araali-cluster-save-blueprint.png
Update Blueprint

Blueprint
araali-fw

CANCEL

_images/minikube-guestbook.png
$ kubectl ge& pods -A

NAMESPACE
araali-operator
guestbook
guestbook
guestbook
guestbook
guestbook
guestbook
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

NAME
servicediscovery-68f6688d4—t9nc7
frontend-6cé6dédfdsd-2mlvé
frontend-6cé6dédfdsd—-gm7hl
frontend-6cé6dédfdad—s4jmv
redis—-master-f46ff57fd-8m91lq
redis-slave-7979cfdfb8-cfvrf
redis-slave-7979cfdfb8-fjzzk
araali-fw-46q7z
coredns-74ff55c5b-nfpsh
etcd-minikube
kube-apiserver-minikube
kube-controller—-manager—-minikube
kube-proxy-9dwht
kube-scheduler-minikube
storage-provisioner

READY
slgl
i
i
i
i
il
si
s
g
U
ikt
i
S
el
oL f

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO0 OOO®

AGE
8h

69s
69s
69s
69s
69s
69s
8h

43h
43h
43h
43h
43h
43h
43h

_images/minikube-install.png
$ minikube start --iso-url=file:///tmp/minikube.iso —--driver=virtualbox
& minikube v1.17.1 on Darwin 10.14.6
ﬁf minikube 1.18.1 is available! Download it: https://github.com/kubernetes/minikube/releases/tag/v1.18.1
To disable this notice, run: 'minikube config set WantUpdateNotification false'

Using the virtualbox driver based on user configuration
Starting control plane node minikube in cluster minikube
Creating virtualbox VM (CPUs=2, Memory=4000MB, Disk=20000MB)
Preparing Kubernetes v1.20.2 on Docker 20.10.4 ...

= Generating certificates and keys ...

= Booting up control plane ...

= Configuring RBAC rules ...

RSE

Aﬁ Verifying Kubernetes components...
. Enabled addons: storage-provisioner, default-storageclass

B

Done! kubectl is now configured to use "minikube" cluster and "default" namespace by default

_images/rafay-araali-new-addon-version.png
shboard Add-Ons > araali-fw > New Version

Infrastructure New Version

Provide the configuration for a new version of the addon.
NOTE: All operations related to lifecycle of addons can be automated using the RCTL CLI

er Templat

Version Name *

v1.0

Description

[r— Araali Firewall

Repository*
(96 araali-helm
Chart Name Chart Version

araali-fw 1.00

Cloud Credentials

Values File(s)

@ Upload () Override from git repository

Upgrade Plans

Selected Values

(s)

10 valuesyaml

kup/Restore >

DISCARD CHANGES & EXIT
DISCARD CHANGES & EXIT

Araali Networks

Name
Package Type
Artifact Sync
Rep